

Inverse Gaussian Elimination

Sure 😊 Let's do it in a more compact way.

We want A^{-1} for

$$A = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Start with the augmented matrix $[A | I]$:

$$\left[\begin{array}{cccc|cccc} 1 & 0 & 2 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{array} \right]$$

Main row operations (listed without showing every intermediate matrix)

1. Make zeros under the first pivot (column 1):

$$R_2 \leftarrow R_2 - R_1, \quad R_3 \leftarrow R_3 - R_1, \quad R_4 \leftarrow R_4 - R_1$$

2. Use pivot in column 2 (R_2) to clear entries below:

$$R_3 \leftarrow R_3 - 2R_2, \quad R_4 \leftarrow R_4 - R_2$$

3. Swap rows R_3 and R_4 (to get a 1 as pivot in column 3), then clear below:

$$R_3 \leftrightarrow R_4, \quad R_4 \leftarrow R_4 - 2R_3$$

4. Make the pivot in row 4 equal to 1, then clear above it in column 4.

5. Use the pivots in columns 3, 2, 1 to clear above them (back-substitution style) so that the left block becomes I_4 .

After these operations, the matrix becomes

$$\left[\begin{array}{cccc|cccc} 1 & 0 & 0 & 0 & -1 & 2 & -2 & 2 \\ 0 & 1 & 0 & 0 & 1 & -1 & 2 & -2 \\ 0 & 0 & 1 & 0 & 1 & -1 & 1 & -1 \\ 0 & 0 & 0 & 1 & -1 & 0 & -1 & 2 \end{array} \right]$$

So the inverse is just the right block:

$$A^{-1} = \boxed{\begin{bmatrix} -1 & 2 & -2 & 2 \\ 1 & -1 & 2 & -2 \\ 1 & -1 & 1 & -1 \\ -1 & 0 & -1 & 2 \end{bmatrix}}$$

If you want, I can write ONLY the row operations in one list with their results, no explanations.

Reduced Row PREF

Step 1 — Identify pivot and free columns

Matrix A in RREF:

$$A = \begin{bmatrix} 1 & 3 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 & 9 \\ 0 & 0 & 0 & 1 & -4 \end{bmatrix}$$

Pivot columns: 1, 3, 4

Free columns: 2, 5

So the null space will have 2 parameters.

Step 2 — Apply the Minus-1 Trick

Create a 5×5 matrix by inserting -1 on the diagonal where pivot columns are missing (columns 2 and 5):

$$\bar{A} = \begin{bmatrix} 1 & 3 & 0 & 0 & 3 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 9 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

Step 3 — Read solution vectors

Take the columns that have -1 on the diagonal:

Column 2 \rightarrow first solution vector

$$v_1 = \begin{bmatrix} 3 \\ -1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Column 5 \rightarrow second solution vector

$$v_2 = \begin{bmatrix} 3 \\ 0 \\ 9 \\ -4 \\ -1 \end{bmatrix}$$

Final Answer (in few steps)

$$x = \lambda_1 \begin{bmatrix} 3 \\ -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 3 \\ 0 \\ 9 \\ -4 \\ -1 \end{bmatrix}, \quad \lambda_1, \lambda_2 \in \mathbb{R}.$$

Augment and PREF

$$\begin{aligned}x_1 + 2x_2 - x_3 + 3x_4 &= 5 \\2x_1 + 4x_2 + x_3 + x_4 &= 8 \\3x_1 - 6x_2 + 2x_3 + (a+1)x_4 &= -10\end{aligned}$$

PR

Given

(A) Write the augmented matrix.

(A)

(B) Reduce it to REF.

(B)

(C) Determine for which values of a the system is:

(C)

1. inconsistent

(A)

2. has unique solution

(B)

3. has infinitely many solutions

(C)

(D) For solvable cases, find the particular solution.

(D)

(E) Find the general solution (parametric vector form).

(E)

(F) Solve the homogeneous system $Ax = 0$.

(F)

(G) Use the minus-1 trick to find the null space.

(G)

(H) Identify pivot and free variables.

(H)

SOLUTION — Problem 1

Piv

(A) Augmented matrix

Fre

$$\left[\begin{array}{ccccc} 1 & 2 & -1 & 3 & 5 \\ 2 & 4 & 1 & 1 & 8 \\ -3 & -6 & 2 & a+1 & -10 \end{array} \right]$$

(B)

Eqn

(B) REF

1. $R2 \rightarrow R2 - 2R1$

2. $R3 \rightarrow R3 + 3R1$

$$\left[\begin{array}{ccccc} 1 & 2 & -1 & 3 & 5 \\ 0 & 0 & 3 & -5 & -2 \\ 0 & 0 & -1 & a+10 & 5 \end{array} \right]$$

So:

PROBLEM 2**(E) Inverse**

Given matrix in RREF:

$$A = \begin{bmatrix} 1 & 0 & 3 & 1 & 0 \\ 0 & 1 & -2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Form:

) Identify pivot / free variables

) Solve $\mathbf{Ax} = \mathbf{0}$ 1. $\mathbf{R2} \cdot$

) Use minus-1 trick to find null space basis

) Write general solution

) Compute inverse of 2×2 matrix using Gaussian elimination:2. $\mathbf{R2} \cdot$

$$B = \begin{bmatrix} 4 & 7 \\ 2 & 3 \end{bmatrix}$$

) Pivot / free

3. $\mathbf{R1} \cdot$

Pivots in columns: 1, 2, 4, 5

Free variable: x_3 only) Solve $\mathbf{Ax} = \mathbf{0}$ 4. $\mathbf{R1} \cdot$

Equations:

1. $x_1 + 3x_3 + x_4 = 0$

2. $x_2 - 2x_3 = 0$

Thus:

3. $x_4 = 0$

4. $x_5 = 0$

;

• $x_4 = 0$

• $x_5 = 0$

• $x_2 = 2x_3$

e of B

$$B = \begin{bmatrix} 4 & 7 \\ 2 & 3 \end{bmatrix}$$

$$[B \mid I] = \left[\begin{array}{cc|cc} 4 & 7 & 1 & 0 \\ 2 & 3 & 0 & 1 \end{array} \right]$$

$\rightarrow R2 - (1/2)R1:$

$$\left[\begin{array}{cc|cc} 4 & 7 & 1 & 0 \\ 0 & -0.5 & -0.5 & 1 \end{array} \right]$$

$\rightarrow R2 / -0.5:$

$$\left[\begin{array}{cc|cc} 4 & 7 & 1 & 0 \\ 0 & 1 & 1 & -2 \end{array} \right]$$

$\rightarrow R1 - 7 \cdot R2:$

$$\left[\begin{array}{cc|cc} 4 & 0 & -6 & 14 \\ 0 & 1 & 1 & -2 \end{array} \right]$$

$\rightarrow R1/4:$

$$[B \mid B^{-1}] = \left[\begin{array}{cc|cc} 1 & 0 & -\frac{3}{2} & \frac{7}{2} \\ 0 & 1 & 1 & -2 \end{array} \right]$$

$$B^{-1} = \left[\begin{array}{cc} -\frac{3}{2} & \frac{7}{2} \\ 1 & -2 \end{array} \right]$$

Angles and Orthogonality

For vectors x, y ,

$$\cos \omega = \frac{\langle x, y \rangle}{\sqrt{\langle x, x \rangle \langle y, y \rangle}} = \frac{x^\top y}{\sqrt{x^\top x y^\top y}}$$

★ P
Comput

2 Compute the dot products

a) $x^\top y$

$$x^\top y = [1 \ 1] \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 1 \cdot 1 + 1 \cdot 2 = 1 + 2 = 3$$

Since th

b) $x^\top x$ (norm squared of x)

$$x^\top x = [1 \ 1] \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 \cdot 1 + 1 \cdot 1 = 1 + 1 = 2$$

So the a

c) $y^\top y$ (norm squared of y)

$$y^\top y = [1 \ 2] \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 1 \cdot 1 + 2 \cdot 2 = 1 + 4 = 5$$

✓ This

3 Plug into the formula

$$\cos \omega = \frac{x^\top y}{\sqrt{x^\top x y^\top y}} = \frac{3}{\sqrt{2 \cdot 5}} = \frac{3}{\sqrt{10}}$$

So

where

$$\omega = \arccos \left(\frac{3}{\sqrt{10}} \right)$$

4 Numerical value

$$\frac{3}{\sqrt{10}} \approx 0.9487$$

Step 1

$$\omega \approx \arccos(0.9487) \approx 0.32 \text{ radians} \approx 18^\circ$$

Step 2

So:

+

Orthogonal Vectors

Use

ART 1 — Using the Standard Dot Product

te:

$$x^T y = [1 \ 1] \begin{bmatrix} -1 \\ 1 \end{bmatrix} = 1(-1) + 1(1) = -1 + 1 = 0$$

We :

he dot product is 0, we know:

$$x \perp y$$

Now

angle between them is:

$$\omega = 90^\circ$$

Con

; matches the picture (the arrows look perpendicular).

ART 2 — Using the New Inner Product

er product is defined as:

$$\langle x, y \rangle_M = x^T M y$$

Con

$$M = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

We :

: Compute $M y$

$$M y = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

Plug

: Compute the inner product $x^T M y$

$$x^T (M y) = [1 \ 1] \begin{bmatrix} -2 \\ 1 \end{bmatrix} = 1(-2) + 1(1) = -2 + 1 = -1$$

Ask anything

Com

PART 3 — Compute the New Angle (optional but useful)

the generalized angle formula:

$$\cos \omega = \frac{x^\top M y}{\sqrt{x^\top M x \ y^\top M y}}$$

already have:

$$x^\top M y = -1$$

/ compute the norms.

compute $x^\top M x$

$$M x = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$x^\top M x = [1 \ 1] \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 2 + 1 = 3$$

compute $y^\top M y$

already found:

$$M y = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

$$y^\top M y = [-1 \ 1] \begin{bmatrix} -2 \\ 1 \end{bmatrix} = (-1)(-2) + 1 \cdot 1 = 2 + 1 = 3$$

g into the angle formula

$$\cos \omega = \frac{-1}{\sqrt{3 \cdot 3}} = \frac{-1}{3}$$

$$\omega = \arccos \left(-\frac{1}{3} \right) \approx 1.91 \text{ rad}$$

vert to degrees:

$$1.91 \text{ rad} \stackrel{\downarrow}{\approx} 109.5^\circ$$

Eigenvalues and Eigenvectors

We're given the matrix

$$A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}.$$

We want:

1. Eigenvalues λ
2. Eigenvectors for each eigenvalue
3. Eigenspaces (the set of all eigenvectors for a given λ)

Step 1 – Characteristic Polynomial

Eigenvalues come from:

$$\det(A - \lambda I) = 0$$

First compute $A - \lambda I$:

$$A - \lambda I = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = \begin{bmatrix} 4 - \lambda & 2 \\ 1 & 3 - \lambda \end{bmatrix}.$$

Now compute its determinant:

$$p_A(\lambda) = \det(A - \lambda I) = (4 - \lambda)(3 - \lambda) - 2 \cdot 1.$$

Multiply out:

$$(4 - \lambda)(3 - \lambda) = 12 - 4\lambda - 3\lambda + \lambda^2 = \lambda^2 - 7\lambda + 12.$$

Subtract 2:

$$p_A(\lambda) = \lambda^2 - 7\lambda + 12 - 2 = \lambda^2 - 7\lambda + 10.$$

So the characteristic polynomial is

$$p_A(\lambda) = \lambda^2 - 7\lambda + 10.$$

Step 2 – Eigenvalues

Solve

$$\lambda^2 - 7\lambda + 10 = 0.$$

Factor:

$$\lambda^2 - 7\lambda + 10 = (\lambda - 2)(\lambda - 5).$$

So the eigenvalues are

$$\boxed{\lambda_1 = 2, \quad \lambda_2 = 5}.$$

vectors

For each eigenvalue λ , solve

$$(A - \lambda I)x = 0$$

for a nonzero vector x .

(a) Eigenvectors for $\lambda = 5$

Compute $A - 5I$:

$$A - 5I = \begin{bmatrix} 4 - 5 & 2 \\ 1 & 3 - 5 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix}$$

Solve

$$\begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

This gives equations:

$$-x_1 + 2x_2 = 0 \quad \text{and} \quad x_1 - 2x_2 = 0$$

They are the same equation: $x_1 = 2x_2$.

Let $x_2 = 1$ (any nonzero number works); then $x_1 = 2$.

So one eigenvector is

$$v_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

All eigenvectors for $\lambda = 5$ are scalar multiples of this:

$$E_5 = \left\{ \alpha \begin{bmatrix} 2 \\ 1 \end{bmatrix} : \alpha \in \mathbb{R} \right\} = \text{span} \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$$

That's the eigenspace for $\lambda = 5$.

(b) Eigenvectors for $\lambda = 2$

Compute $A - 2I$:

$$A - 2I = \begin{bmatrix} 4 - 2 & 2 \\ 1 & 3 - 2 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$$

Solve

$$\begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Equations:

$$2x_1 + 2x_2 = 0, \quad x_1 + x_2 = 0$$

They're the same equation: $x_1 = -x_2$.

Let $x_2 = -1$; then $x_1 = 1$.

So an eigenvector is

$$v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

All eigenvectors for $\lambda = 2$ are multiples of this:

$$E_2 = \left\{ \alpha \begin{bmatrix} 1 \\ -1 \end{bmatrix} : \alpha \in \mathbb{R} \right\} = \text{span} \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$$

This is the eigenspace for $\lambda = 2$.

Final Result

- Eigenvalues:

$$\lambda_1 = 2, \quad \lambda_2 = 5$$

4.2

Consider the following matrices:

$$\begin{bmatrix} 2 \\ -2 \end{bmatrix} \cdot$$

$$= 0.$$

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix} \} \cdot$$

$$\begin{bmatrix} 2 \\ 1 \end{bmatrix} \cdot$$

0.

(1) Eigenvalue equation & characteristic polynomial

1. (a) Write the eigenvalue equation
2. (b) Derive the characteristic polynomial
3. (c) Find the eigenvalues of A and

(2) Eigenspaces, geometric multiplicity, and

2. (a) For each eigenvalue λ of A, compute the eigenspace E_λ by solving $(A - \lambda I)x = 0$.

2. (b) For each λ , find a basis of E_λ consisting of $\dim(E_\lambda)$ linearly independent eigenvectors.

3. (c) Normalize the eigenvectors to have unit length.

4. (d) Form the matrix

whose columns are the unit eigenvectors.

$$\left[\begin{smallmatrix} 1 \\ -1 \end{smallmatrix}\right]\Big\}\,.$$

$$B = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}, P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix}.$$

Find a polynomial for A .

Find the eigenvalues for A : $Ax = \lambda x$.

Find the characteristic polynomial $p_A(\lambda) = \det(A - \lambda I)$.

Find the algebraic multiplicities of their eigenvalues.

Find the eigenvectors and eigenvalues of A .

Compute the eigenspace

$$E_\lambda = \ker(A - \lambda I)$$

Find its geometric multiplicity

Normalize the eigenvectors to unit length and show that they are orthonormal.

$$Q = [u_1 \ u_2]$$

Find the eigenvalues of A , and the diagonal matrix

$$\Lambda = \text{diag}(\lambda_1, \lambda_2).$$

Verify the spectral theorem.

(3) Determine

3. (a)
4. (b)

3. (c)
4. (d)

(4) Identity

4. (a)
5. (b)
6. (c)

(5) Defectiveness

5. (a)
6. (b)
7. (c)

(6) Symmetry

6. (a)
7. (b)

spectral decomposition (spectral theorem for symmetric matrices):

$$A = Q\Lambda Q^T.$$

invariant, trace, and geometric interpretation for A

Compute $\det(A)$ and $\text{tr}(A)$ directly from A.

Verify the theorems:

$$\det(A) = \prod_i \lambda_i, \text{tr}(A) = \sum_i \lambda_i.$$

Give a geometric interpretation in \mathbb{R}^2 :

along each eigenvector direction, by what factor does A stretch or compress the vector?

y matrix as a special case

Consider the identity matrix I_2 . Find its characteristic polynomial and eigenvalues.

What is the eigenspace E_1 of I_2 ? What is its geometric multiplicity?

Explain why **every non-zero vector** in \mathbb{R}^2 is an eigenvector of I_2 .

negative matrix and multiplicities: matrix B

Compute the characteristic polynomial of B and find its eigenvalues and **algebraic multiplicities**.

Find the eigenspace $E_2 = \ker(B - 2I)$ and its geometric multiplicity.

Decide whether B is **defective** or not (compare geometric vs algebraic multiplicity).

strict positive semi-definite matrix $S = A^T A$

Compute $S = A^T A$ for matrix A.

Show that S is symmetric.

4.5 Singular Value Decomposition

Understanding Example 4.12 (Vectors and the SVD)

We are given the matrix

$$A = \begin{bmatrix} 1 & -0.8 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

This matrix maps vectors from \mathbb{R}^2 to \mathbb{R}^3 .

We want to understand this mapping using the **Singular Value Decomposition (SVD)**.

Step 1 — What is SVD?

SVD writes any matrix A as:

$$A = U\Sigma V^T$$

Where:

- V^T rotates vectors in the input space (\mathbb{R}^2).
- Σ stretches or shrinks vectors (scaling).
- U rotates vectors in the output space (\mathbb{R}^3).

So the mapping:

$$x \mapsto Ax$$

is broken into three geometric operations:

$$x \xrightarrow{V^T} \text{rotate} \xrightarrow{\Sigma} \text{stretch} \xrightarrow{U} \text{rotate}$$

This is why SVD is so powerful:

It explains exactly how a matrix transforms vectors.

Step 2 — Look at the SVD of A

The book gives the decomposition:

$$A = U\Sigma V^T$$

Where

1. U (3×3 orthogonal matrix \rightarrow rotation in \mathbb{R}^3)

$$U = \begin{bmatrix} -0.79 & 0 & -0.62 \\ 0.38 & -0.78 & -0.49 \\ -0.48 & -0.62 & 0.62 \end{bmatrix}$$

2. Σ (a 3×2 diagonal matrix \rightarrow scaling)

$$\Sigma = \begin{bmatrix} 1.62 & 0 \\ 0 & 1.0 \\ 0 & 0 \end{bmatrix}$$

This tells us:

- First singular value = 1.62
- Second singular value = 1.00

These values tell how much the matrix stretches a rotated input vector.

3. V^T (2×2 rotation matrix → rotates the input grid)

$$V^T = \begin{bmatrix} -0.78 & 0.62 \\ -0.62 & -0.78 \end{bmatrix}$$

★ Step 3 — How the SVD transforms the grid of vectors

The example starts with a 2×2 square grid of vectors in \mathbb{R}^2 :

$$X \subset [-1, 1] \times [-1, 1]$$

These vectors undergo three transformations:

(1) Apply $V^\top \rightarrow$ Rotate the grid in \mathbb{R}^2

The original square grid becomes a **rotated square**.

This is shown in Figure 4.9 (not included here).

(2) Apply $\Sigma \rightarrow$ Stretch the grid in two perpendicular directions

- One axis is stretched by 1.62
- The other axis is stretched by 1.0 (no change)

Now the rotated square becomes a long **ellipse/cylinder shape** in \mathbb{R}^3 .

(3) Apply $U \rightarrow$ Rotate the stretched shape inside \mathbb{R}^3

This positions the final set of vectors in their correct 3D orientation.

This explains the final picture shown in the bottom-right of Figure 4.9.

★ What the example is teaching you

The key message:

SVD explains the geometry of any linear transformation:

1. Rotate the input
2. Stretch the input along orthogonal axes
3. Rotate into the output space

Even when mapping $\mathbb{R}^2 \rightarrow \mathbb{R}^3$, SVD still works and provides interpretation.

This is extremely helpful for:

- dimensionality reduction
- PCA

- image compression
- understanding transformations

★ Summary

- Start with a 2D grid of points.
- V^T rotates these points.
- Σ scales them along new orthogonal directions.
- U embeds and rotates them in 3D space.

Thus, SVD dissects the transformation A into pure geometric steps.

Exercise: Full SVD Analysis of a Non-Square Matrix

Consider the matrix

$$A = \begin{bmatrix} 3 & 1 \\ -1 & 3 \end{bmatrix}$$

This is a 2×3 matrix with rank 2.

Perform all tasks below.

Task 1 — Compute the Full SVD of A**Step 1 — Compute $A^T A$**

$$A^T A = \begin{bmatrix} 3 & -1 \\ 1 & 3 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 3 \end{bmatrix}$$

Step 2 — Eigenvalues of $A^T A$

Solve $\det(A^T A - \lambda I) = 0$ and obtain:

$$\lambda_1 = 12, \lambda_2 = 1$$

Step 3 — Singular Values

$$\begin{aligned} \sigma_i &= \sqrt{\lambda_i} \\ \sigma_1 &= 2\sqrt{3}, \sigma_2 = 2 \end{aligned}$$

Task 2 — Right-Singular Vectors

Compute eigenvectors of $A^T A$.

After normalization:

 Matrix we are working with

$$A^T A$$

To find λ , solve:

$$\det(A^T A) = 0$$

 Step 1 — Subtract λ from diag

$$A^T A - \lambda I =$$

 Step 2 — Take the determinant

$$\det \begin{bmatrix} 5 - \lambda & 4 \\ 4 & 5 - \lambda \end{bmatrix}$$

 Step 3 — Expand it

$$(5 - \lambda)$$

Expand square:

$$(25 - 10\lambda + \lambda^2)$$

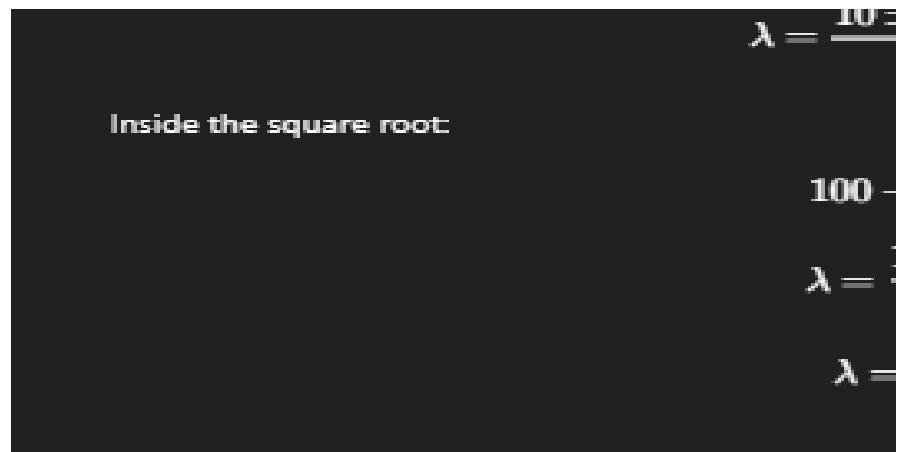
Simplify:

$$\lambda^2 - 10\lambda + 25$$

 Step 4 — Solve the quadratic

$$\lambda^2 - 10\lambda + 25 = 0$$

Use the formula:



$$\begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix}$$

Thus

Task 3 — Build the

Because A is 2×2

$$\begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 10 & 0 & 2 \\ 0 & 10 & 4 \\ 2 & 4 & 2 \end{bmatrix}$$

Task 4 — Compute

$$8, \lambda_3 = 0$$

For u_1 :

$$i\sqrt{2}, \sigma_3 = 0$$

For u_2 :

$$= \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}$$

$$A - \lambda I) = 0.$$

onal

$$= \begin{bmatrix} 5 - \lambda & 4 \\ 4 & 5 - \lambda \end{bmatrix}$$

t

$$= (5 - \lambda)(5 - \lambda) - 4 \cdot 4$$

$$\lambda^2 - 16 = 0$$

$$+ \lambda^2) - 16 = 0$$

$$0\lambda + 9 = 0$$

equation

$$0\lambda + 9 = 0$$

$$\frac{\pm \sqrt{100 - 36}}{2}$$

$$-36 = 64$$

$$\frac{10 \pm \sqrt{64}}{2}$$

$$= \frac{10 \pm 8}{2}$$

$$v_1 = \frac{1}{\sqrt{6}} [1 \ 2], v_2 = \frac{1}{\sqrt{2}} [-1 \ 1], v_3 = \frac{1}{\sqrt{3}} [-1 \ 1]$$

$$V = [v_1 \ v_2 \ v_3]$$

he Matrix Σ

3:

$$\Sigma = \begin{bmatrix} 2\sqrt{3} & 0 & 0 \\ 0 & 2\sqrt{2} & 0 \end{bmatrix}$$

rite the Left-Singular Vectors

$$u_i = \frac{1}{\sigma_i} A v_i$$

$$A v_1 = \frac{1}{\sqrt{6}} [3+1+2 \ -1+3+2] = \frac{1}{\sqrt{6}} [6 \ 4] = \frac{\sqrt{6}}{\sqrt{6}} [4]$$

$$u_1 = \begin{bmatrix} \sqrt{\frac{1}{2}} \\ \frac{2}{3} \sqrt{\frac{1}{2}} \end{bmatrix}$$

Q2. SVD of $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$

1. $A^T A = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}.$

2. Eigenvalues: $\lambda_1 = 9, \lambda_2 = 1.$
 $\Rightarrow \sigma_1 = 3, \sigma_2 = 1.$

3. Eigenvectors (right singular vectors):

- For $\lambda_1 = 9$: eigenvector $(1, 1)^T$.

Normalized:

$$v_1 = \frac{1}{\sqrt{2}}(1, 1)^T.$$

- For $\lambda_2 = 1$: eigenvector $(-1, 1)^T$.

Normalized:

$$v_2 = \frac{1}{\sqrt{2}}(-1, 1)^T.$$

\Rightarrow

$$V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

4. Left singular vectors:

$$u_i = \frac{1}{\sigma_i} A v_i.$$

- $A v_1 = \frac{3\sqrt{2}}{2}(1, 1)^T \Rightarrow$
 $u_1 = \frac{1}{3} A v_1 = \frac{1}{\sqrt{2}}(1, 1)^T.$
- $A v_2 = \frac{\sqrt{2}}{2}(1, -1)^T \Rightarrow$
 $u_2 = A v_2 = \frac{1}{\sqrt{2}}(1, -1)^T.$

\Rightarrow

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

5. $\Sigma = \text{diag}(3, 1).$

SVD:

$$A = U\Sigma V^T$$

(Because A is symmetric, here $U = V$.)

Q3. SVD of

1. $A^T A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$

2. Eigenvalue
 $\Rightarrow \sigma_1 = \sqrt{2}$

3. Right singular

• For λ_1

$$v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

• For λ_2

$$v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

\Rightarrow

$$\begin{bmatrix} -1 \\ 1 \end{bmatrix} \cdot$$

4. Left singular

• $Av_1 =$

Norm

$$u_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

• $Av_2 =$

Norm

$$u_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix} \cdot$$

To get a full
solve $\Rightarrow u_3$

So

5. Σ (full, 3 >

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \quad (3 \times 2)$$

$$\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}.$$

so: $\lambda_1 = 3$, $\lambda_2 = 1$.

$\sqrt{3}$, $\sigma_2 = 1$.

scalar vectors:

$\lambda_1 = 3$: eigenvector $(1, 1)^T$.

$$\frac{1}{\sqrt{2}}(1, 1)^T.$$

$\lambda_2 = 1$: eigenvector $(-1, 1)^T$, so

$$\frac{1}{\sqrt{2}}(-1, 1)^T.$$

$$A^T A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

scalar vectors:

$$= \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \sqrt{2} \right)^T.$$

$$= \sqrt{3} \Rightarrow$$

$$\frac{1}{\sqrt{3}} A v_1 = \begin{bmatrix} \sqrt{6}/6 \\ \sqrt{6}/6 \\ \sqrt{6}/3 \end{bmatrix}.$$

$$= \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0 \right)^T.$$

$$= 1 \Rightarrow$$

$$A v_2 = \begin{bmatrix} -\sqrt{2}/2 \\ \sqrt{2}/2 \\ 0 \end{bmatrix}.$$

all $U \in \mathbb{R}^{3 \times 3}$, add u_3 orthogonal to both:

$$= \frac{1}{\sqrt{3}}(-1, -1, 1)^T.$$

$$U = [u_1 \ u_2 \ u_3].$$

< 2):

$$\Sigma = \begin{bmatrix} \sqrt{3} & 0 \\ \downarrow & 1 \\ 0 & 0 \end{bmatrix} .$$

Example 4.12 (Vectors and the SVD)

Consider a mapping of a square grid of vectors $\mathcal{X} \in \mathbb{R}^2$ that fit in a box of size 2×2 centered at the origin. Using the standard basis, we map these vectors using

$$\mathbf{A} = \begin{bmatrix} 1 & -0.8 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \mathbf{U} \Sigma \mathbf{V}^\top \quad (4.67a)$$

$$= \begin{bmatrix} -0.79 & 0 & -0.62 \\ 0.38 & -0.78 & -0.49 \\ -0.48 & -0.62 & 0.62 \end{bmatrix} \begin{bmatrix} 1.62 & 0 \\ 0 & 1.0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -0.78 & 0.62 \\ -0.62 & -0.78 \end{bmatrix}. \quad (4.67b)$$

We start with a set of vectors \mathcal{X} (colored dots; see top-left panel of Figure 4.9) arranged in a grid. We then apply $\mathbf{V}^\top \in \mathbb{R}^{2 \times 2}$, which rotates \mathcal{X} . The rotated vectors are shown in the bottom-left panel of Figure 4.9. We now map these vectors using the singular value matrix Σ to the codomain \mathbb{R}^3 (see the bottom-right panel in Figure 4.9). Note that all vectors lie in

1 What matrix \mathbf{A} is doing

We have a linear map

$$\mathbf{A} : \mathbb{R}^2 \rightarrow \mathbb{R}^3, \quad \mathbf{A} = \begin{bmatrix} 1 & -0.8 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

So any vector $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$ is mapped to

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 1 & -0.8 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 0.8x_2 \\ x_2 \\ x_1 \end{bmatrix} \in \mathbb{R}^3.$$

The example says: imagine a square grid of points in \mathbb{R}^2 (like dots in a 2×2 box centered at the origin). We apply \mathbf{A} to each point and see where they land in \mathbb{R}^3 .

2 SVD of \mathbf{A}

The SVD writes \mathbf{A} as

$$\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^\top,$$

where

- V is 2×2 orthogonal (rotation/reflection in the input space),
- Σ is 3×2 diagonal (singular values = scalings),
- U is 3×3 orthogonal (rotation/reflection in the output space).

In the example this is:

$$A = \underbrace{\begin{bmatrix} -0.79 & 0 & -0.62 \\ 0.38 & -0.78 & -0.49 \\ -0.48 & -0.62 & 0.62 \end{bmatrix}}_U \underbrace{\begin{bmatrix} 1.62 & 0 \\ 0 & 1.0 \\ 0 & 0 \end{bmatrix}}_{\Sigma} \underbrace{\begin{bmatrix} -0.78 & 0.62 \\ -0.62 & -0.78 \end{bmatrix}}_{V^T}. \quad (4.67b)$$

(Values are approximate.)

Example 4.13 (Computing the SVD)

Let us find the singular value decomposition of

$$A = \begin{bmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \end{bmatrix}. \quad (4.81)$$

The SVD requires us to compute the right-singular vectors v_j , the singular values σ_k , and the left-singular vectors u_i .

Step 1: Right-singular vectors as the eigenbasis of $A^\top A$.

We start by computing

$$A^\top A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 5 & -2 & 1 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}. \quad (4.82)$$

We compute the singular values and right-singular vectors v_j through the eigenvalue decomposition of $A^\top A$, which is given as

$$A^\top A = \begin{bmatrix} \frac{5}{\sqrt{30}} & 0 & \frac{-1}{\sqrt{6}} \\ \frac{-2}{\sqrt{30}} & \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{30}} & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} 6 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{5}{\sqrt{30}} & \frac{-2}{\sqrt{30}} & \frac{1}{\sqrt{30}} \\ 0 & \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix} = P D P^\top, \quad (4.83)$$

and we obtain the right-singular vectors as the columns of P so that

$$V = P = \begin{bmatrix} \frac{5}{\sqrt{30}} & 0 & \frac{-1}{\sqrt{6}} \\ \frac{-2}{\sqrt{30}} & \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{30}} & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{6}} \end{bmatrix}. \quad (4.84)$$

Step 2: Singular-value matrix.

As the singular values σ_i are the square roots of the eigenvalues of

1 Compute $A^\top A$ and its eigen-decomposition (right singular vectors)

$$A^\top A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 5 & -2 & 1 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \quad (4.82)$$

Now find eigenvalues and orthonormal eigenvectors of $A^\top A$.

- Eigenvalues: $\lambda_1 = 6$, $\lambda_2 = 1$, $\lambda_3 = 0$.
- One eigenvector for each:
 - $\lambda_1 = 6$: $v_1 \propto [5, -2, 1]^\top$
 - $\lambda_2 = 1$: $v_2 \propto [0, 1, 2]^\top$
 - $\lambda_3 = 0$: $v_3 \propto [-1, -2, 1]^\top$

Normalize them:

$$\|[5, -2, 1]\| = \sqrt{30}, \quad \|[0, 1, 2]\| = \sqrt{5}, \quad \|[-1, -2, 1]\| = \sqrt{6}$$

So an orthonormal eigenbasis is

$$P = V = \begin{bmatrix} \frac{5}{\sqrt{30}} & 0 & -\frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{30}} & \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{30}} & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{6}} \end{bmatrix} \quad (4.84)$$

and

$$A^\top A = P \begin{bmatrix} 6 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} P^\top = P D P^\top \quad (4.83)$$

$$A^T A = I \quad \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right]^{-1} = I \quad (1.60)$$

The columns of V are the right singular vectors v_1, v_2, v_3 .

2 Singular values and Σ

Singular values are the square roots of the eigenvalues of $A^T A$:

$$\sigma_1 = \sqrt{6}, \quad \sigma_2 = 1, \quad \sigma_3 = 0.$$

Since A is 2×3 , we use the "thin" $\Sigma \in \mathbb{R}^{2 \times 3}$:

$$\Sigma = \begin{bmatrix} \sqrt{6} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

2 Singular values and Σ

Singular values are the square roots of the eigenvalues of $A^T A$:

$$\sigma_1 = \sqrt{6}, \quad \sigma_2 = 1, \quad \sigma_3 = 0.$$

Since A is 2×3 , we use the "thin" $\Sigma \in \mathbb{R}^{2 \times 3}$:

$$\Sigma = \begin{bmatrix} \sqrt{6} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

3 Left singular vectors u_i and U

For non-zero singular values,

$$u_i = \frac{1}{\sigma_i} A v_i.$$

For $\sigma_1 = \sqrt{6}$:

$$v_1 = \frac{1}{\sqrt{30}} \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}, \quad A v_1 = \frac{1}{\sqrt{30}} \begin{bmatrix} 6 \\ -12 \end{bmatrix} = \begin{bmatrix} 6/\sqrt{30} \\ -12/\sqrt{30} \end{bmatrix}.$$

Then

$$u_1 = \frac{1}{\sqrt{6}} A v_1 = \begin{bmatrix} 1/\sqrt{5} \\ -2/\sqrt{5} \end{bmatrix}.$$

For $\sigma_2 = 1$:

$$v_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \quad A v_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix}.$$

So

$$u_2 = A v_2 = \begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix}.$$

These columns are orthonormal, so

$$U = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}.$$

(There is no third left singular vector because A is 2×3 , rank 2.)

Final SVD

$$A = U \Sigma V^T$$

with

$$U = \begin{bmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}, \quad \Sigma = \begin{bmatrix} \sqrt{6} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad V = \begin{bmatrix} \frac{6}{\sqrt{30}} & 0 & -\frac{12}{\sqrt{30}} \\ -\frac{12}{\sqrt{30}} & \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \end{bmatrix}.$$

$$\begin{bmatrix} -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix}^T \quad \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T \quad \begin{bmatrix} \frac{\sqrt{30}}{6} & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} \end{bmatrix}$$

You can check by multiplying $U\Sigma V^T$ that you recover

$$A = \begin{bmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \end{bmatrix}.$$

◻ □ □ □ □ ...

||

5.3:

Gradient of a Vector-Valued Linear Function

Let

$$f(x) = Ax, A = \begin{bmatrix} 2 & -1 & 0 \\ 3 & 1 & 4 \end{bmatrix}, x \in \mathbb{R}^3.$$

(a) Compute the Jacobian $\frac{df(x)}{dx}$.

(b) Verify it equals the matrix A .

Gradient of a Nonlinear Vector-Valued Function

Let

$$f(x) = \begin{bmatrix} x_1 x_2 + e^{x_3} \\ x_1^2 - 3x_2 + \sin x_3 \\ x_2 x_3^2 \end{bmatrix}.$$

Find the full Jacobian

$$J = \frac{df(x)}{dx} \in \mathbb{R}^{3 \times 3}.$$

Jacobian Determinant (Area Scaling)

Given the linear mapping

$$y = Jx, J = \begin{bmatrix} -2 & 1 \\ 1 & 1 \end{bmatrix}.$$

(a) Compute $\det(J)$.

(b) Interpret it geometrically as area scaling.

(c) Show how it transforms the unit square to a parallelogram.

Linear Regression Gradient Using Vector Calculus

Consider the linear model:

$$y = \Phi\theta,$$

where

where

- $\theta \in \mathbb{R}^2$ is the parameter vector,
- $\Phi \in \mathbb{R}^{3 \times 2}$ is the design matrix,
- $y \in \mathbb{R}^3$ is the vector of observations.

Let:

$$\Phi = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 2 & -1 \end{bmatrix}, \quad \theta = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \quad y = \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix}.$$

Define:

$$e(\theta) = y - \Phi\theta, \quad L(\theta) = \|e(\theta)\|^2.$$

Task

Compute the gradient

$$\nabla_{\theta} L(\theta) = \frac{\partial L}{\partial \theta}$$

step by step.

Step-by-Step Solution

1. Compute the prediction $\Phi\theta$

$$\Phi\theta = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1+6 \\ 3 \\ 2-3 \end{bmatrix} = \begin{bmatrix} 7 \\ 3 \\ -1 \end{bmatrix}.$$

2. Compute the error vector $e(\theta) = y - \Phi\theta$

$$e(\theta) = \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 7 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} -3 \\ -2 \\ 1 \end{bmatrix}.$$

 + Ask anything

Change of Coordinates (Basis Transformation)

Given bases

$$b_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, b_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

and new basis

$$c_1 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}, c_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

(a) Find the change-of-basis matrix J such that

$$Jb_1 = c_1, Jb_2 = c_2.$$

(b) Verify by computing the determinant that the area scaling equals 3.

Jacobian of Nonlinear Coordinate Transform

Given

$$y_1 = -2x_1 + x_2, y_2 = x_1 + x_2,$$

Compute the Jacobian

$$J = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \end{bmatrix},$$

and compute the determinant.

Chain Rule (Vector Form)

Let:

$$h(t) = (f \circ g)(t)$$

3. Formula for the gradient

From Example 5.11:

$$\frac{\partial L}{\partial \theta} = -2\Phi^T e(\theta).$$

4. Compute Φ^T

$$\Phi^T = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}.$$

5. Multiply $\Phi^T e$

$$\Phi^T e = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} -3 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1(-3) + 0(-2) + 2(1) \\ 2(-3) + 1(-2) + (-1)(1) \end{bmatrix}.$$

Compute:

- First entry: $-3 + 2 = -1$
- Second entry: $-6 - 2 - 1 = -9$

Thus:

$$\Phi^T e = \begin{bmatrix} -1 \\ -9 \end{bmatrix}.$$

6. Compute the gradient

$$\frac{\partial L}{\partial \theta} = -2 \begin{bmatrix} -1 \\ -9 \end{bmatrix} = \begin{bmatrix} 2 \\ 18 \end{bmatrix}.$$

 Final Answer

$$\nabla_{\theta} L(\theta) = \begin{bmatrix} 2 \\ 18 \end{bmatrix}$$

This is the gradient of the least-squares loss with respect to the parameter vector θ .

Gradient of a Linear Vector Function

Given

$$f(x) = Ax, A = \begin{bmatrix} 2 & -1 & 0 \\ 3 & 1 & 4 \end{bmatrix}, x \in \mathbb{R}^3.$$

Write components:

$$f_1(x) = 2x_1 - x_2, f_2(x) = 3x_1 + x_2 + 4x_3.$$

The Jacobian is

$$\frac{df}{dx} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \frac{\partial f_1}{\partial x_3} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \frac{\partial f_2}{\partial x_3} \end{bmatrix}.$$

Compute:

- $\frac{\partial f_1}{\partial x_1} = 2, \frac{\partial f_1}{\partial x_2} = -1, \frac{\partial f_1}{\partial x_3} = 0$
- $\frac{\partial f_2}{\partial x_1} = 3, \frac{\partial f_2}{\partial x_2} = 1, \frac{\partial f_2}{\partial x_3} = 4$

Thus

$$\boxed{\frac{df}{dx} = \begin{bmatrix} 2 & -1 & 0 \\ 3 & 1 & 4 \end{bmatrix} = A}$$

This confirms: the Jacobian of a linear function $f(x) = Ax$ is exactly A .

Jacobian of a Nonlinear Vector Function

$$f(x) = \begin{bmatrix} x_1 x_2 + e^{x_3} \\ x_1^2 - 3x_2 + \sin x_3 \\ x_2 x_3^2 \end{bmatrix}.$$

Compute all partial derivatives:

First component:

$$\frac{\partial f_1}{\partial x_1} = x_2, \frac{\partial f_1}{\partial x_2} = x_1, \frac{\partial f_1}{\partial x_3} = e^{x_3}.$$

Second:

$$\frac{\partial f_2}{\partial x_1} = 2x_1, \frac{\partial f_2}{\partial x_2} = -3, \frac{\partial f_2}{\partial x_3} = \cos x_3.$$

Third:

$$\frac{\partial f_3}{\partial x_1} = 0, \frac{\partial f_3}{\partial x_2} = x_3^2, \frac{\partial f_3}{\partial x_3} = 2x_2x_3.$$

Jacobian:

$$J(x) = \begin{bmatrix} x_2 & x_1 & e^{x_3} \\ 2x_1 & -3 & \cos x_3 \\ 0 & x_3^2 & 2x_2x_3 \end{bmatrix}$$

Determinant as Area Scaling

Given

$$J = \begin{bmatrix} -2 & 1 \\ 1 & 1 \end{bmatrix}.$$

Determinant:

$$\det(J) = (-2)(1) - (1)(1) = -3.$$

Geometric meaning:

$$|\det(J)| = 3$$

This means the linear map scales all areas by a factor of 3 (and flips orientation because the determinant is negative).

Unit square \rightarrow parallelogram:

Question

Let

1. $A \in \mathbb{R}^{3 \times 2}$ and

2. Define functions

and

(a) Compute the gradient (Jacobian)

(b) Compute the gradient $\frac{dh}{dt}$ using

Solutions

(a) Gradient of the vector-valued

Write A and z as

Then

$$f(x) =$$

The Jacobian (gradient) is the matrix:

Compute each:

- $f_1(x) = A_{11}x_1 + A_{12}x_2$
 $\frac{\partial f_1}{\partial x_1} = A_{11}, \frac{\partial f_1}{\partial x_2} = A_{12}$
- $f_2(x) = A_{21}x_1 + A_{22}x_2$
 $\frac{\partial f_2}{\partial x_1} = A_{21}, \frac{\partial f_2}{\partial x_2} = A_{22}$
- $f_3(x) = A_{31}x_1 + A_{32}x_2$
 $\frac{\partial f_3}{\partial x_1} = A_{31}, \frac{\partial f_3}{\partial x_2} = A_{32}$

So

 Result: For $f(x) = Ax$, the grad

$$f(x) = Ax, \quad x \in \mathbb{R}^2, \quad f(x) \in \mathbb{R}^3.$$

$$f : \mathbb{R}^2 \rightarrow \mathbb{R}, \quad f(x_1, x_2) = x_1^2 e^{x_2},$$

$$g : \mathbb{R} \rightarrow \mathbb{R}^2, \quad g(t) = \begin{bmatrix} t^3 \\ \sin t \end{bmatrix},$$

$$h(t) = (f \circ g)(t) = f(g(t)).$$

$$\frac{\partial f}{\partial x} \text{ for } f(x) = Ax.$$

the chain rule, writing all intermediate derivatives clearly.

function $f(x) = Ax$

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

$$Ax = \begin{bmatrix} A_{11}x_1 + A_{12}x_2 \\ A_{21}x_1 + A_{22}x_2 \\ A_{31}x_1 + A_{32}x_2 \end{bmatrix} = \begin{bmatrix} f_1(x) \\ f_2(x) \\ f_3(x) \end{bmatrix}.$$

of partial derivatives:

$$\frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \\ \frac{\partial f_3}{\partial x_1} & \frac{\partial f_3}{\partial x_2} \end{bmatrix}.$$

$$\frac{\partial f}{\partial x} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix} = A.$$

hient/Jacobian is simply A .

(b) Chain rule for $h(t) = f(g(t))$

Recall

$$f(x_1, x_2) = x_1^2 e^{x_2}, \quad g(t) =$$

So

$$h(t) = f(g(t))$$

We'll compute $\frac{dh}{dt}$ using the matrix chain rule

Step 1: Gradient of f with respect to x

$$\frac{\partial f}{\partial x_1} = 2$$

So in vector form (row gradient, as in the text)

$$\frac{\partial f}{\partial x} = [$$

Step 2: Gradient of g with respect to t

$$g(t) = \begin{bmatrix} t^2 \\ \sin t \end{bmatrix}$$

Step 3: Chain rule

Matrix chain rule (like eq. 5.74a):

Plug in:

$$\frac{dh}{dt} = 1$$

This is a 1×2 times 2×1 product \rightarrow scalar:

$$\frac{dh}{dt} = 2$$

Now substitute $x_1 = t^3$, $x_2 = \sin t$:

- * $x_1 = t^3$
- * $x_1^2 = t^6$
- * $e^{x_2} = e^{\sin t}$

So

$$\begin{aligned}\frac{dh}{dt} &= 2(t^3 \\ &= 6\end{aligned}$$

You can factor if you like:

$$\frac{dh}{dt} =$$

👉 Final gradient:

$$\boxed{\frac{dh}{dt} = 6t^5 e^{\sin t} +}$$

$$= \begin{bmatrix} t^3 \\ \sin t \end{bmatrix}, \quad x = g(t) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} t^3 \\ \sin t \end{bmatrix}.$$

$$g(t)) = (t^3)^2 e^{\sin t} = t^6 e^{\sin t}.$$

i.e. as in the book.

$$f(x_1, x_2) = x_1^2 e^{x_2}.$$

$$[x_1 e^{x_2}, \quad \frac{\partial f}{\partial x_2} = x_1^2 e^{x_2}.$$

∴

$$[2x_1 e^{x_2} \quad x_1^2 e^{x_2}] \in \mathbb{R}^{1 \times 2}.$$

$$t] \Rightarrow \frac{\partial g}{\partial t} = \begin{bmatrix} 3t^2 \\ \cos t \end{bmatrix} \in \mathbb{R}^{2 \times 1}.$$

$$dh = \partial f \partial g$$

$$\frac{dx}{dt} = \frac{\partial x}{\partial t}.$$

$$\begin{bmatrix} 2x_1 e^{x_2} & x_1^2 e^{x_2} \end{bmatrix} \begin{bmatrix} 3t^2 \\ \cos t \end{bmatrix}.$$

∴

$$x_1 e^{x_2} \cdot 3t^2 + x_1^2 e^{x_2} \cdot \cos t.$$

$$^2) e^{\sin t} \cdot 3t^2 + (t^6) e^{\sin t} \cos t$$

$$t^6 e^{\sin t} + t^6 e^{\sin t} \cos t.$$

$$= t^5 e^{\sin t} (6 + t \cos t).$$

$$t^6 e^{\sin t} \cos t = t^5 e^{\sin t} (6 + t \cos t).$$

Example 5.14

Consider the function

$$f(x) = \sqrt{x^2 + \exp(x^2)} + \cos(x^2 + \exp(x^2)) \quad (5.122)$$

from (5.109). If we were to implement a function f on a computer, we would be able to save some computation by using *intermediate variables*:

$$a = x^2, \quad (5.123)$$

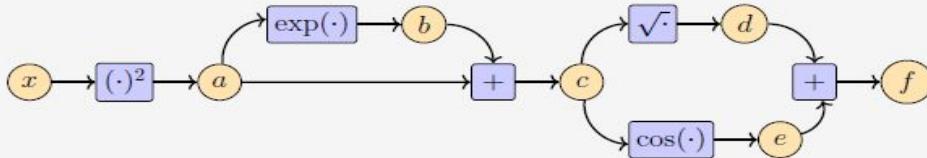
$$b = \exp(a), \quad (5.124)$$

$$c = a + b, \quad (5.125)$$

$$d = \sqrt{c}, \quad (5.126)$$

$$e = \cos(c), \quad (5.127)$$

$$f = d + e. \quad (5.128)$$



This is the same kind of thinking process that occurs when applying the chain rule. Note that the preceding set of equations requires fewer operations than a direct implementation of the function $f(x)$ as defined in (5.109). The corresponding computation graph in Figure 5.11 shows the flow of data and computations required to obtain the function value f .

The set of equations that include intermediate variables can be thought of as a computation graph, a representation that is widely used in implementations of neural network software libraries. We can directly compute the derivatives of the intermediate variables with respect to their corresponding inputs by recalling the definition of the derivative of elementary functions. We obtain the following:

$$\frac{\partial a}{\partial x} = 2x \quad (5.129)$$

$$\frac{\partial b}{\partial a} = \exp(a) \quad (5.130)$$

We have

$$z =$$

with

(A) Forward pass

1. Compute z

2. Hidden activation

3. Output y

4. Loss L

$$L =$$

(B) Backpropagation

We work backward

1. $\partial L / \partial y$

$$z = w_1x + b_1, \quad h = \sigma(z) = \frac{1}{1 + e^{-z}}, \quad y = w_2h + b_2, \quad L = \frac{1}{2}(y - t)^2$$

$$x = 2, \quad t = 1, \quad w_1 = 0.5, \quad b_1 = 0.1, \quad w_2 = -1, \quad b_2 = 0.2.$$

pass

$$z = w_1x + b_1 = 0.5 \cdot 2 + 0.1 = 1.0 + 0.1 = 1.1$$

activation h

$$h = \sigma(z) = \frac{1}{1 + e^{-1.1}} \approx 0.7503$$

$$y = w_2h + b_2 = -1 \cdot 0.7503 + 0.2 \approx -0.5503$$

$$L = \frac{1}{2}(y - t)^2 = \frac{1}{2}(-0.5503 - 1)^2 = \frac{1}{2}(-1.5503)^2 \approx \frac{1}{2} \cdot 2.4033 \approx 1.2017$$

aggregation – gradients

gradients using the chain rule.

$$L = \frac{1}{2}(y - t)^2 \quad \Rightarrow \quad \frac{\partial L}{\partial y} = y - t$$

$$\frac{\partial L}{\partial y} = -0.5503 - 1 \approx -1.5503$$

2. Gradients for w_2, b_2

$$y = w_2h + b_2 \Rightarrow \frac{\partial y}{\partial w_2} = h, \quad \frac{\partial y}{\partial b_2} = 1, \quad \frac{\partial y}{\partial h} = w_2$$

So

$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial w_2} = (y - t)h \approx (-1.5503)(0.7503) \approx -1.11$$

$$\frac{\partial L}{\partial b_2} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial b_2} = (y - t) \cdot 1 \approx -1.5503$$

3. Gradient for h

$$\frac{\partial L}{\partial h} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial h} = (y - t)w_2 = (-1.5503)(-1) \approx 1.5503$$

4. Gradient for z

We use the sigmoid derivative:

$$h = \sigma(z), \quad \sigma'(z) = h(1 - h)$$

So

$$\frac{\partial h}{\partial z} = h(1 - h) \approx 0.7503(1 - 0.7503) \approx 0.7503 \cdot 0.2497 \approx 0$$

Then

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial h} \frac{\partial h}{\partial z} \approx 1.5503 \cdot 0.1874 \approx 0.2905$$

5. Gradients for w_1, b_1

$$z = w_1x + b_1 \Rightarrow \frac{\partial z}{\partial w_1} = x, \quad \frac{\partial z}{\partial b_1} = 1$$

Therefore

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial w_1} = \frac{\partial L}{\partial z} x \approx 0.2905 \cdot 2$$

631

$$\frac{\partial L}{\partial b_1} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial b_1} = \frac{\partial L}{\partial z} \cdot 1 \approx 0.2$$

(If you wanted, $\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} w_1 \approx 0.1452$.)

Summary of gradients (approx.)

$$\frac{\partial L}{\partial y} \approx -1.5503$$

$$\frac{\partial L}{\partial w_2} \approx -1.1631, \quad \frac{\partial L}{\partial b_2} \approx -1.1$$

$$\frac{\partial L}{\partial h} \approx 1.5503$$

$$\frac{\partial L}{\partial z} \approx 0.2905$$

$$\frac{\partial L}{\partial w_1} \approx 0.5809, \quad \frac{\partial L}{\partial b_1} \approx 0.2905$$

(C) Reverse-mode automatic differentiation (short exp)

1.1874

Reverse-mode automatic differentiation (AD) evaluates the computational graph values in a graph ("tape"), then runs a **backward pass** that applies the gradients to the inputs. The backward pass reuses intermediates, so the cost of getting gradients with respect to many parameters is only a small constant factor more than symbolic differentiation. Unlike symbolic differentiation, reverse-mode AD does not build huge numerical finite differences, it is exact up to machine precision. That's why backpropagation is the standard method for training neural networks.

⟳ ⏪ ⏴ ⏵ ⏵ ⋮

$$\frac{z}{t} = 1$$

$$z \approx 0.5809$$

1905

5503

5

luation)

on **once forward**, storing intermediate chain rule from outputs back to all gradients of one scalar loss with the cost of computing the loss itself. In algebraic expressions, and unlike why reverse-mode AD deals with millions of parameters.

2

6.2.1

(E) 4

We observe two categorical random variables:

- X has 4 possible states:

$$x_1, x_2, x_3, x_4$$

(F) 4

1

2

- Y has 3 possible states:

$$y_1, y_2, y_3$$

(G) 4

The following table gives the joint frequencies n_{ij} :

Using this table, answer ALL of the following:

X/Y	y_1	y_2	y_3	Row sum (r_i)
x_1	4	5	1	?
x_2	2	6	2	?
x_3	3	1	4	?
x_4	1	8	2	?
Column sum	?	?	?	$N = ?$

(H) 1

Whi

Whi

(A) 1

xi: 4

xi: 2

xi: 3

xi: 1

(B) 4

yi: 4

yi: 5

yi: 1

(A) Compute all row sums r_i .

(B) Compute all column sums c_j .

(C) Compute the total number of observations N .

(D) Compute the joint probabilities:

$$P(X = x_2, Y = y_2), P(X = x_4, Y = y_3)$$

Mo

So 1

Mo

(F) Conditional probabilities

Formula:

$$P(Y = y_j \mid X = x_i) = \frac{n_{ij}}{r_i}$$

$$P(X = x_i \mid Y = y_j) = \frac{n_{ij}}{c_j}$$

$$P(Y = y_2 \mid X = x_1) = n_{12}/r_1 = 5/10 = 0.5$$

$$P(X = x_2 \mid Y = y_3) = n_{23}/c_3 = 2/9 \approx 0.222$$

So 1

(G) Check summation rules

$$\sum_i P(X = x_i)$$

$$10/34 + 10/34 + 8/34 + 6/34 = 34/34 = 1$$

Correct ✓

$$\sum_i P(Y = y_i)$$

$$10/34 + 15/34 + 9/34 = 34/34 = 1$$

Correct ✓

(H) Interpretation

✓ Most frequent pair (largest n_{ij})

- Largest cell = 6 (for x_1, y_2)

So the pair ($X=x_1, Y=y_2$) is the most common.

Compute the marginal probabilities:

$$P(X = x_3), P(Y = y_1)$$

Compute the conditional probabilities:

1. $P(Y = y_2 | X = x_1)$
2. $P(X = x_2 | Y = y_3)$

Check that

$$\sum_i P(X = x_i) = 1, \sum_j P(Y = y_j) = 1$$

Interpret the result:

ch pair (X and Y states) seems the most frequent?

ch category seems most probable for X? For Y?

Row sums

$$1 + 5 + 1 = 10$$

$$1 + 6 + 2 = 10$$

$$1 + 1 + 4 = 8$$

$$. + 3 + 2 = 6$$

Column sums

$$1 + 2 + 3 + 1 = 10$$

$$1 + 6 + 1 + 3 = 15$$

$$. + 2 + 4 + 2 = 9$$

most probable category of X:

$$\max \{10/34, 10/34, 8/34, 6/34\} = 10/34$$

x_1 and x_2 are tied as most probable.

most probable category of Y:

$$\max \{10/34, 15/34, 9/34\} = 15/34$$

y_2 is the most probable Y category

(C) Total

(or sum of columns: 10)

(D) Joint probabilities

Formula:

$$P(X = x_2, Y = y_2) =$$

$$P(X = x_4, Y = y_3) =$$

(E) Marginal probabilities

Formula:

$$P(X = x_3) = r_3/N =$$

$$P(Y = y_1) = c_1/N =$$

FORMULAS :

1. Joint Probability (Pr)

Where:

- n_{ij} = frequency of $(X = x_i, Y = y_j)$
- N = total observations

2. Marginal Probabilities

Where:

(column sum)

3. Marginal Probability

Where:

(row sum)

4. Probability Mass Fu

$$N = 10 + 10 + 8 + 6 = 34$$

$$+15+9=34)$$

i

$$P(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

$$n_{22}/34 = 6/34 \approx 0.176$$

$$n_{43}/34 = 2/34 \approx 0.0588$$

lities

$$P(X = x_i) = \frac{n_i}{N}$$

$$P(Y = y_j) = \frac{c_j}{N}$$

$$8/34 \approx 0.235$$

$$10/34 \approx 0.294$$

robability of both X and Y together)

$$P(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

if $(X = x_i \text{ AND } Y = y_j)$

ditions

ty of X

$$P(X = x_i) = \frac{c_i}{N}$$

$$c_i = \sum_{j=1}^m n_{ij}$$

X \ Y	y_1	y_2
x_1	4	2
x_2	5	1
x_3	3	6
x_4	2	3
x_5	1	4
Column Sum c_j	15	16

So total number of events:

1. Joint Probability

Joint probability:

$$P(A \cap B)$$

Example:

$$P(A)$$

2. Marginal Probability of X

$$P(X)$$

Compute each:

- $P(X = x_1) = \frac{9}{45} = 0.20$
- $P(X = x_2) = \frac{10}{45} = 0.222$
- $P(X = x_3) = \frac{10}{45} = 0.222$
- $P(X = x_4) = \frac{8}{45} = 0.178$
- $P(X = x_5) = \frac{8}{45} = 0.178$

Check sum:

$$0.20 + 0.222 + 0.222 + 0.178 + 0.178 = 1.0$$

3. Marginal Probability of Y

$$P(Y)$$

Compute each:

- $P(Y = y_1) = \frac{15}{45} = 0.333$
- $P(Y = y_2) = \frac{16}{45} = 0.355$
- $P(Y = y_3) = \frac{14}{45} = 0.311$

Sum:

$$0.333 + 0.355 + 0.311 = 1.0$$

$j=1$

y of Y

$$P(Y = y_j) = \frac{r_j}{N}$$

$$r_j = \sum_{i=1}^n n_{ij}$$

unction (PMF)

4. Conditional Probability

Example:

Probability of $Y = y_2$ given $X = x_3$:

$$P(Y = y_2 | X = x_3)$$

Another example:

$$P(Y = y_1 | X = x_1)$$

y_{ij}	Row Sum r_i
3	9
4	10
1	10
3	8
3	8
14	45 (Total N)

$$N = 45$$

$$r_i, y_j) = \frac{r_{ij}}{N}$$

$$r_1, y_2) = \frac{2}{45}$$

$$C = x_i) = \frac{r_i}{N}$$

$$0.222 + 0.178 + 0.178 = 1$$

$$r', y_j) = \frac{c_j}{N}$$

$$0.355 + 0.311 = 1$$

$$= x_3) = \frac{n_{g2}}{r_3} = \frac{6}{10} = 0.6$$
$$X = x_2) = \frac{5}{10} = 0.5$$

↓

Example 7.1

Consider a quadratic function in two dimensions

$$f \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \frac{1}{2} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^\top \begin{bmatrix} 2 & 1 \\ 1 & 20 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} 5 \\ 3 \end{bmatrix}^\top \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad (7.7)$$

with gradient

$$\nabla f \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^\top \begin{bmatrix} 2 & 1 \\ 1 & 20 \end{bmatrix} - \begin{bmatrix} 5 \\ 3 \end{bmatrix}^\top. \quad (7.8)$$

Starting at the initial location $x_0 = [-3, -1]^\top$, we iteratively apply (7.6) to obtain a sequence of estimates that converge to the minimum value

Let's calculate the first iteration of gradient descent using the numbers from your image.

1. Identify the parameters: From Equation (7.7), we have the matrix A and vector b :

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 20 \end{bmatrix}, \quad b = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$$

2. Identify the Start Point: The text states the initial location is:

$$x_0 = \begin{bmatrix} -3 \\ -1 \end{bmatrix}$$

3. Calculate the Gradient at x_0 : Using Equation (7.8) from the image (written in standard column vector form):

$$\nabla f(x) = Ax - b$$

First, multiply A by x_0 :

$$Ax_0 = \begin{bmatrix} 2 & 1 \\ 1 & 20 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \end{bmatrix} = \begin{bmatrix} (2)(-3) + (1)(-1) \\ (1)(-3) + (20)(-1) \end{bmatrix} = \begin{bmatrix} -7 \\ -23 \end{bmatrix}$$

Next, subtract b :

$$\nabla f(x_0) = \begin{bmatrix} -7 \\ -23 \end{bmatrix} - \begin{bmatrix} 5 \\ 3 \end{bmatrix} = \begin{bmatrix} -12 \\ -26 \end{bmatrix}$$

The gradient is $[-12, -26]^\top$. This tells us the slope is very steep in the negative direction.

4. Update the Position (The Step): We need a learning rate (α). The image doesn't provide one, so let's assume a standard rate of $\alpha = 0.05$.

$$x_1 = x_0 - 0.05 \times \nabla f(x_0)$$

$$x_1 = \begin{bmatrix} -3 \\ -1 \end{bmatrix} - 0.05 \begin{bmatrix} -12 \\ -26 \end{bmatrix}$$

$$= \begin{bmatrix} -3 \\ -1 \end{bmatrix} - \begin{bmatrix} -0.6 \\ -1.3 \end{bmatrix}$$

$$\mathbf{x}_1 = \begin{bmatrix} \circ \\ -1 \end{bmatrix} - \begin{bmatrix} \circ \circ \\ -1.3 \end{bmatrix}$$

$$\mathbf{x}_1 = \begin{bmatrix} -3 + 0.6 \\ -1 + 1.3 \end{bmatrix} = \begin{bmatrix} -2.4 \\ 0.3 \end{bmatrix}$$

1. Define the quadratic function

We have

$$f \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \frac{1}{2} \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 20 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} 5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Let's expand it so it looks more familiar.

1. Multiply the matrix by the vector:

$$\begin{bmatrix} 2 & 1 \\ 1 & 20 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2x_1 + x_2 \\ x_1 + 20x_2 \end{bmatrix}$$

2. Left-multiply by $[x_1 \ x_2]$:

$$\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2x_1 + x_2 \\ x_1 + 20x_2 \end{bmatrix} = x_1(2x_1 + x_2) + x_2(x_1 + 20x_2) = 2x_1^2 + 2x_1x_2 + 20x_2^2$$

3. Multiply by $\frac{1}{2}$:

$$\frac{1}{2}(\dots) = x_1^2 + x_1x_2 + 10x_2^2$$

4. Last term:

$$\begin{bmatrix} 5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 5x_1 + 3x_2$$

So

$$f(x_1, x_2) = x_1^2 + x_1x_2 + 10x_2^2 - 5x_1 - 3x_2$$

2. Gradient of f

Take partial derivatives:

$$\frac{\partial f}{\partial x_1} = 2x_1 + x_2 - 5$$

$$\frac{\partial f}{\partial x_2} = x_1 + 20x_2 - 3$$

So

$$\nabla f(x_1, x_2) = \begin{bmatrix} 2x_1 + x_2 - 5 \\ x_1 + 20x_2 - 3 \end{bmatrix}$$

This matches the compact matrix form in your book:

$$\nabla f(x) = \begin{bmatrix} 2 & 1 \\ 1 & 20 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} - \begin{bmatrix} 5 \\ 3 \end{bmatrix}$$

3. Gradient Descent Example

Use gradient descent with:

- learning rate $\alpha = 0.05$
- starting point $x^{(0)} = \begin{bmatrix} -3 \\ -1 \end{bmatrix}$

Update rule:

$$x^{(k+1)} = x^{(k)} - \alpha \nabla f(x^{(k)})$$

Step 0 → 1

Start: $x^{(0)} = (-3, -1)$

Gradient at $x^{(0)}$:

$$\begin{bmatrix} 2(-3) + (-1) - 5 \\ -3 + 20(-1) - 3 \end{bmatrix} = \begin{bmatrix} -10 \\ -26 \end{bmatrix}$$

$$\nabla f(-3, -1) = \begin{bmatrix} 2(-3) + (-1) - 5 \\ (-3) + 20(-1) - 3 \end{bmatrix} = \begin{bmatrix} -12 \\ -26 \end{bmatrix}$$

Update:

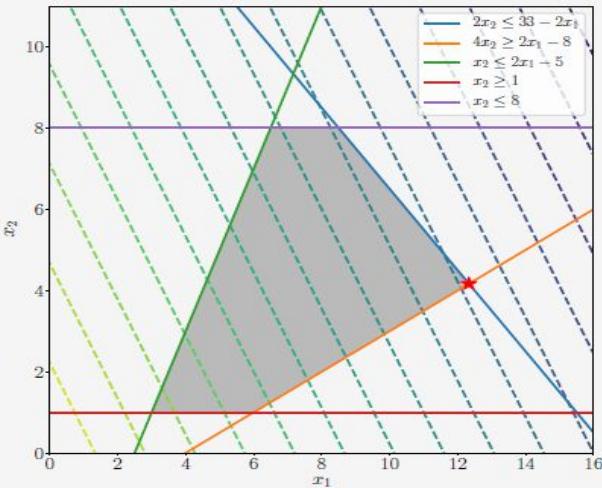
$$x^{(1)} = x^{(0)} - 0.05 \cdot (-12, -26) = (-3, -1) + (0.6, 1.3) = \boxed{(-2.4, 0.3)}$$

Example 7.5 (Linear Program)

Consider the linear program

$$\begin{array}{ll} \min_{x \in \mathbb{R}^2} & - \begin{bmatrix} 5 \\ 3 \end{bmatrix}^\top \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \\ \text{subject to} & \begin{bmatrix} 2 & 2 \\ 2 & -4 \\ -2 & 1 \\ 0 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 33 \\ 8 \\ 5 \\ -1 \\ 8 \end{bmatrix} \end{array} \quad (7.44)$$

with two variables. This program is also shown in Figure 7.9. The objective function is linear, resulting in linear contour lines. The constraint set in standard form is translated into the legend. The optimal value must lie in the shaded (feasible) region, and is indicated by the star.



3 Evaluate the objective at each vertex

Recall $f(x_1, x_2) = -5x_1 - 3x_2$.

1. At $\left(\frac{37}{3}, \frac{25}{6}\right)$:

$$f = -5 \cdot \frac{37}{3} - 3 \cdot \frac{25}{6} = -\frac{185}{3} - \frac{75}{6} = -\frac{445}{6} \approx -74.17$$

2. At $(17/2, 8)$:

$$f = -5 \cdot \frac{17}{2} - 3 \cdot 8 = -\frac{85}{2} - 24 = -66.5$$

3. At $(6, 1)$:

$$f = -5 \cdot 6 - 3 \cdot 1 = -33$$

4. At $(-2, 1)$:

$$f = -5(-2) - 3 \cdot 1 = 10 - 3 = 7$$

5. At $(3/2, 8)$:

$$f = -5 \cdot \frac{3}{2} - 3 \cdot 8 = -\frac{15}{2} - 24 = -31.5$$

We are minimizing, so we choose the smallest value:

$$f_{\min} = -\frac{445}{6} \approx -74.17$$

at

$$x^* = \left(\frac{37}{3}, \frac{25}{6} \right) \approx (12.33, 4.17).$$

That point is the star shown in the plot: it lies in the feasible region and is where the objective's constraint is as "low" (in the minimize sense) as possible while still touching the shaded region.

□ ▲ ▾ ⌂ ⌃ ...

1 Write the linear program in inequalities

From the matrix form (7.44):

$$\min_{x \in \mathbb{R}^2} -[5 \ 3]^T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \text{s.t.} \quad \begin{bmatrix} 2 & 2 \\ 2 & -4 \\ -2 & 1 \\ 0 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leq \begin{bmatrix} 33 \\ 8 \\ 5 \\ -1 \\ 8 \end{bmatrix}$$

Write constraints explicitly:

1. $2x_1 + 2x_2 \leq 33$
2. $2x_1 - 4x_2 \leq 8$
3. $-2x_1 + x_2 \leq 5$
4. $-x_2 \leq -1 \Rightarrow x_2 \geq 1$
5. $x_2 \leq 8$

Objective:

$$\min f(x_1, x_2) = -5x_1 - 3x_2$$

(Equivalently, maximize $5x_1 + 3x_2$.)

The shaded polygon in the figure is the set of points satisfying all 5 inequalities (the feasible region).

2 Find the corner points (vertices) of the feasible region

In 2-D linear programming, the optimum (if it exists and the region is bounded in the direction of optimization) occurs at a vertex of the feasible polygon.

Vertices are intersections of pairs of boundary lines:

- (1) $2x_1 + 2x_2 = 33$
- (2) $2x_1 - 4x_2 = 8$
- (3) $-2x_1 + x_2 = 5$
- (4) $x_2 = 1$
- (5) $x_2 = 8$

Solve intersections and keep only those that satisfy all inequalities.

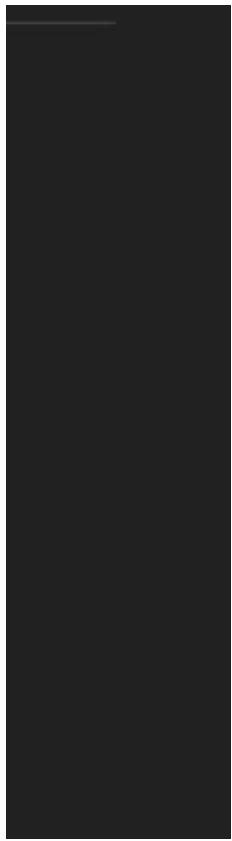
The feasible vertices are:

1. Intersection of (1) & (2):

$$\begin{cases} 2x_1 + 2x_2 = 33 \\ 2x_1 - 4x_2 = 8 \end{cases} \Rightarrow x_1 = \frac{37}{3}, \quad x_2 = \frac{25}{6}$$

- 2. (1) & (5): $(x_1, x_2) = (17/2, 8)$
- 3. (2) & (4): $(x_1, x_2) = (6, 1)$
- 4. (3) & (4): $(x_1, x_2) = (-2, 1)$
- 5. (3) & (5): $(x_1, x_2) = (3/2, 8)$

All five lie in the shaded region.



our line

3 Evaluate the objective at each vertex

Recall $f(x_1, x_2) = -5x_1 - 3x_2$.

1. At $\left(\frac{37}{3}, \frac{25}{6}\right)$:

$$f = -5 \cdot \frac{37}{3} - 3 \cdot \frac{25}{6} = -\frac{185}{3} - \frac{75}{6} = -\frac{445}{6} \approx -74.17$$

2. At $(17/2, 8)$:

$$f = -5 \cdot \frac{17}{2} - 3 \cdot 8 = -\frac{85}{2} - 24 = -66.5$$

3. At $(6, 1)$:

$$f = -5 \cdot 6 - 3 \cdot 1 = -33$$

4. At $(-2, 1)$:

$$f = -5(-2) - 3 \cdot 1 = 10 - 3 = 7$$

5. At $(3/2, 8)$:

$$f = -5 \cdot \frac{3}{2} - 3 \cdot 8 = -\frac{15}{2} - 24 = -31.5$$

We are minimizing, so we choose the smallest value:

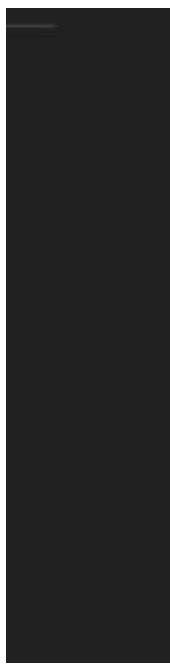
$$f_{\min} = -\frac{445}{6} \approx -74.17$$

at

$$x^* = \left(\frac{37}{3}, \frac{25}{6} \right) \approx (12.33, 4.17).$$

That point is the star shown in the plot: it lies in the feasible region and is where the objective's contour line is as "low" (in the minimize sense) as possible while still touching the shaded region.

□ ↗ ↙ ↕ ↖ ↗



ine