Inverse Gaussian Elimination

Sure & Let's do it in a more compact way.

We want A~ for

1 D 2 0

1 1 O 0

A=11 2 p 1

1. 1T 1. 1

Start with the augmented matrix [A | T):

1 0 2 0|1 o O 0
1 1 & o0 1 O 0O
1 2 0 1|0 0 1 0
1 1 1 1 0o o 0 1

Main row operations (listed without showing every intermediate matrix)

1. Make zeros under the first pivot {column 1):
Bo+— Ry — Ry, HRi+— A3— R, Ry+— Ry— I
2. Use pivot in columnn 2 (F5) to clear entries below:
R+ Ry — 2R, Ry« R;— A
3. Swap rows R and R, (to get a 1 as pivot incolumn 3), then clear below:
Ry~ Ry, Hy+— By — 20,

4. Make the pivot in row 4 egual to 1, then cear above it in column 4.,
3. Use the pivots in columns 3, 2, 1 to clear above them [back-substitution style) so that the left block
becomes T,

After these operations, the matrix becomes

i1 0 a0 0] -1 2 —2 2
¢ 1 0 0 1 —1 2 —=
0 0 1 0 1 —1 1 —1
¢ o g 1| -1 L1 —1 2
So the imrerse is just the right block:
1 2 —2 2
3% 1 —1 2 —2
] 1 —1 1 —1
—1 0 —1 2

If you want, | can write ORNLY the row operations in one list with their results, mo explanations.



Reduced Row PREF

Step 1 — Ildentify pivot and free columns
Matrix A in RREFR:

1 3 a0 3
A= D 0 1 & D
o o o 1 -—4

Pivot columns: 1, 3, 4

Free columns: 2, 5

Sa the null space will have 2 parameters,

Step 2 — Apply the Minus-1 Trick

Create a 5x5 matrix by inserting -1 on the diagonal where pivol columns are missing (columns 2 and S

1 2 0 0 3
0O —1 0 0 o0
A— |0 1] 1 0 ]
0 o 0 1 -4
0 o 0 0 -1
Step 3 — Read solution vectors
Take the columns that have -1 on the diagonal:
Column 2 — first solution vector
3
—1
h:= 0
1]
0
Column 5 — second solution vector
3
1]
N = O
—1
Final Answer (in few steps)
a 3
—1 L]
= .}|] 0 —_ }tg 0 A 3 }ug = jicd
0 —4
0 |



Augment and PREF

1+ 2ez— 3+ 3x3—=5
B+ dxs 23+ 23— 8

3x Gxres+ 2xs+ (a+ L)lxy= 10

(A) Write the angmented matrix.

(B) Reduce it to REF.

{C) Determine for which values of a the system is:
1. inconsistent
2. has vnigque solution

3. has infinitely many solotions

(E) Find the general solution (parametyic vector form).

(F) Solve the homogeneous system Ax = 0.
(&) Use the minns-1 trick to find the null space.
(H) Identify pivot and free variables.

SOLUTION — Problem 1

(A) Angmented matrix
1 2 -1 3
[2 4 1 1
-3 —6 2 a+1
(B) REF

1. F2 —-F2—-2R1
2. FE3 —F3+3El

—5
—1 a+ 10

,_,

| =R =N

=1 =N
w

—2]
5

PR
=i

(A]
(B)
(C]
(D]
(E)

(A
Piv
Fre

(B)
Eq

So:



WOBLENM 2 (E) Invers:

ven matrix in EREF:

1 0 3 1 0
A= [D 1 =2 0 0
o o 0 1 0 Form:
oo o 0o 1
) Identify piveot / free variables
} Solve Ax =10 1. E2-
) Use minus-1 trick to find null space basis
) Write general solution
) Compute inverse of 2x2 matrix using Ganssian elimination: 7 R2.
4 7
) Pivot [/ free 3 RI1-
rots in columns: 1, 2, 4, 5
e variable: %3 only
| Solve Ax =10 . R1
pations:
1. x, +3x;+x, =10
2. xa—2x5 =0
Thus:
3. x, =10
4 x; =10
« x4 =0
« X3=10

L]
B
ka2

II
Pdi
i
Laa



e of B

— R2 — (1/23K1:

—R2/-0
— R1 - 7-R2:
— R1/4:

'
LN
O

1 0] 3 7
[BEI1B~*] = 2 2]
0 111 =2

3 7

B-t=[ 372 =Z]



Angles and Orthogonality

For vectors x, i,

{2, y) 'y P
COS W = V; = = = \f =
(a,x) (g, 4 2Py gyl
\ S Y vy Comput
[l Compute the dot products
ayz'y .
o Since tk
2Ty=[1 1] ; =1-1+1-2=1+2=3
b) & x (norm squared of x
A . i . So the :
wie= |1 1] : =1:-1+1-1=1+1=2
c) iy i (norm squared of y) «* This
_ e o 1
vy=[1 2][;|=1-1+2-2=1+4=5
w P
[l Plug into the formula .
The inm
'y 3 3
COSw = — =
Valzy'ly AV2-5 10
= where
aAr CO";( 3 )
it = C 5 ——
10
Ll Numerical value
3 0.9487 Step 1
/10
e == arccos(0.9487) =~ 0.32 radians =~ 187
Step 2
So:



Orthogonal Vectors

ART 1 — Using the Standard Dot Product

te:

—1
z g=[1 1] [ 1 ] =1(—-1)+1(1)=—-1+1=0
e dot product is 0, we know:
r 1y
angle between them is:
w = 90

: matches the picture (the arrows look perpendicular).

ART 2 — Using the New Inner Product
er product is defined as:

{2, =2 My

2 0
w2

: Compute My

»: Compute the inner product =z ' My

2" (My)=[1 1] [_12] o T B [ P TR, GES TN

J

Use

Mo

Con

Plug

Conr



PART 3 — Compute the New Angle (optional but useful)

the generalized angle formula:

' Ny
VET Mz yl My

COS W =

already hawve:
x My= —1

+ compute the norms.

npute = Mz

npute iy My

already found:

)

y My=[-1 1] [‘12] =(-1)(—2)+1-1=24+1=3

7 into the angle formula

—1 —1

&t — AFCCOS (—%) = 1.91 rad

vert to degrees:

1.91 raa+ﬁ 109.5%






Eigenvalues and Eigenve«

[4 ﬂ
F ;
1 2

i |

e re gnren the matrix

We want:

1. Eigenvalues X
2. Eigenvectors for each eigenvalue

3. Eigenspaces (the set of all eigenvectors for a given A}

Step 1 — Characteristic Polynomial

Eigernvalues come from:
det{A — AT) =10
First compute A4 — AT:

[4 2 X O] =X =2
"l_M_h 3]_[1*: A]_ - .

Mo compute its determinant:
palA) =det(A—AT) —[4—A)IF—A)—2-1.
Multiply out:
(4—2AN3—A)— 12 —4XA —3A+ AT =22 —7TAa+12
Subtract 2
palM) = A2 —TA+12—-2—2A—7A4+10.
S0 the characteristic polynomial is

pa(A) — A2 — TA + 10.

Step 2 — Eigenvalues
Sohe
AT —TA+10 — 0.
Facton
AT —TA+ 10— (A — 2)(A —5).

5o the eigenvalues are







stors

For each mig=realuoe 5 zobss
[A—Af}le =0

for a monoeno wvechor &2

[a) Bigenvectors for A = 5
Compute A — S

Sobee

This e = LEaticims:

—xy) + 2. =00 amed @y — Ee.
They are the same equstion: £ = 2.
Let ifn = 1 [amy morzeso ramber weorksl: then oy = 2

So one ssgermeectar is

ANl pigervectors far A = § ane scalar mulsiples of this:
x :
Eﬁ=-§ex[l]:11&£}=ﬂm{l

That's the eigenspaos for A = 5.

(b} Eigenvectors for A = 2
Compute A — X

A-E::['*_i' 2 =[2

i3] (=] 0]

Doy + Faa =k, xy + a =

Lok

Egquatsomns:

They're the ssme eguation: 'y = —ify.



Let ifg = —1; then ory = 1.

So am ssgenvechor is

Al pigervectors faor A = & ane muitiples of this:

Er={x [_Il] z o -'—'_'E_}=.=|p-n=:n{l

This is the eigenspace for & = 2.

Final Result
L Eigpe mrealuee=:




= b

# a2

Consider the following matrices:

(1) Eigenvalue equation & characteristi
1. (&) Write the eigenvalue equatic
2. (b) Derive the characteristic pohy

3. (c) Find the eigenvalues of & anc

(2) Eigenspaces, geometric multiplicity,
2. (&) For each eigenvalue dof A, co

E

by solving (A — AlNx = 0.

2. (o) For each A, find a basizs of Ej:
dim (Ez).

3. (c) Normalize the eigenvectors to

4. [d) Form the matrix

whose columns are the unit eigenvector







0 1 1

B:[ﬁ 1P =[1 > ﬁ].
2 1 1

O3 3

¢ polynomial for &
i for & dx = Ax.
mmomial pa(4) = det (4 — AN,

i their algebraic multplicities.

and eigenvectors of &
mpute the eigenspace

o3 = ker (4 — AD)

ind ite geometric multplicity

1 unit length and show that they are orthonormal.

i = [y uz]

= of A, and the diagonal matrix

A= diﬂgl:.-}_l_. J:I.::I.

Werify the s

(3) Determ
3. (&)

4. (B

3. (o
Alo

(4} Identity
4. [a)

5. (B)

B. ()l

(5) Defecty
5. (=)
mu

B (B)
7o)

(6) Symme
& (&)

7. (B






spectral decomposition (spectral theorem for symimetric matrices):

A= QAQT.

linant, trace, and geometric interpretation for &
Compute det (Ajand tr (Ajdirectly from A.

Verify the theorems:

det (4) = l_[ A tr(A) = Z =2 Ay

1 L

Give a geometric interpretaton in B2
ng each eigenvector direction, by what factor does A stretch or compress the vector?

y matrix as a special case
Consider the identity matrix I-. Find its characteristic polynomial and eigenvalues.
What is the sigenspace Eyof I-7 What is its geometric multiplicity?

Explain why every non-zero vector in B=is an eigenvectar of I-.

ve matrix and multiplicities: matrix B

Compute the characteristic polynomizal of Band find its eigenvalues and algebraic
Iiplicities.

Find the gigenspace E; = ker (B — 2ZIand its geometric multiplicity.

Decide whether B is defective or not {compare geometric vs algebraic multplicity).

dric positive semi-definite matrix § = 474
Compute 5 = A7 Afor matrix A.

Show that S is symmetric.










4.5 Singular Value Decomposition

L2 Understanding Example 4.12 (Vectors and the SVD)

We are given the matric
1 —dE
= | L
1 i

We want 1o understand this mapping using the Singuiar Yalue Decomposstian (590

; . =
Thi= matnx maps vectors from 7 to =2

1 Step 1 — What is SVD?

EWD writes any matrie 4 as

A =[5
Whhemra:
= VT robates veckors in the impaut spaos GEI
L] ¥ ctretchies or shrink= vectars fscalimg)

= [V rotates veckors in the ocutput space (5
Lo the mapping:
@ o— A
& brodoen into three geomestrc operations:
¥ = L
F— robate —3F streteln —3 robate

Thi= is whwyy SVD is =0 powerfut

It explaires scocHy how a matric transforms vectars

7 Step 2 — Look at the SVD of A

The= book grees the decompositian
A=[FEW
Whezre
1. L7 {23 orthogonal matrix — rotation in E3)
—ip.50 ik —ih G2
= .38 —FE —(hdf
—iLd8 —062 (62
2. ¥ [a =2 diagonal matriz — scaling)
EG2 0
0= o 1.0k
0 il

This tells ws:



= Farst singuiar wvadue = 1.62
= Second simgular valees = 100

The=se values tell how mauch the matnix stretches a rotated inpaut wector.

3. V" (2=2 rotation matrix — rotates the input grid)

S
= |-n62 —o7T8






7 Step 3 — How the SVD transforms the grid of vec

Thez sxameple starts with a =2 square grid of wectors in |
AT [—1, 1] = [—1,1]

The=se vectors undergo thees transformations:

(1) Apply V¥ — Rotate the grid in [£<

The= ariginal sguare grid becomes a rotated squane.
Thi= is shoown im Figure 22 (not induded hene].

(2} Apply 2 — Stretch the grid in two perpendicular directions
= Oine ais is stredched by 162
= The= otbser avs is sbretched by U0 (ino chanoge]

Mo the rotated square becomes a long ellipsefcylinder shape in B35

(3) Apply [/ — Rotate the stretched shape inside £

This positions the firal set of wecior in their correct 30 coientation.

Thi= explains the final picture showsm in the boom-nght of Figure 49,

7 What the example is teaching you

The key message:

SWD0 explains the geometry of amy linear transformatsom:
1. Aotat= the nput
2. Stretdch the input along orthvogonal axes
3. Hotate into the output space

Cwen when mapging B° — B 90D still works and prowides interpretation
Thi= is extremely heipdul for

- dimensionality reduction

= BCA



o Mg e COmpneEssiom
- urderstanding transformations

1 Summary
- Stact with a 20 grid of ponts.
= V7T rceates these points.

o E scales them along new orthagonal directions.
= [ embeds and rotates themn in 30D space.

Thus, SVD dissects the trarsformation A into pure geometric steps.






fors ‘

Exercise: Full 3%WD Analysis of a Mon-Sguare Matrix

Consider the matrix

3
A=
[ 1 i
This is @ 2 = 3Imatrix with rank 2.
Ferform all tasks belows.
Task 1 — Compute the Full SWD of A
Step 1 — Compute ATA
i -1
ATa=[1 3107, 3
1 1
Step 2 — Eigenvalues of AT A
Solve det{ATA — AI) = 0 and obtain:
Ay =12, 4= =1
Step 3 — Singular Values
I?: = -\.‘ll'Tf
gy = 23,00 = 2

Task 2 — Right-Singular Vectors

Compute eigenvectors of AT A.
After normalization:



B Matrix we are working with
AT A

To find &, sohse:

det( AT

B Step 1 — Subtract A from diag

¥ Step 2 — Take the determina

2 — A 4
+ 2—A

|

¥ Step 3 — Expand it

Expand sguarne:

(25 — 10X

A —1

¥ Step 4 — Solve the quadratic
Af—1

Use the formula:




Inside the square oot




1 1

3 1

1 i0 oz

J=1[0 10 4]
2 4 2

8,13=0

WZa3 =0

Thus

Task 3 — Buwild tl

Because dis 2 =

Task 4 — Compu

For 2q:

For usz:



={(5—A)5—A)—4-4

+ A7) — 16 =10







1 4 —1 1
vi=—=[1lvz=—=[1].vs =—=[-1]
W B * w2 o w3 1
V= [E-:']_ [Ee) 1-'3]
he Matrix
3
X = V3 — o
[21] 22 D]
e the Left-Singular Vectors
1
wy = — Ay
o
i 3+1+2 L & 1‘;
==l s 2l T = LA
1-|I
I|1
2
up=1[ " ]
z 1
3.2










Q2. SVD of 4 — [

g A [r’ 4].

4 3

1
2

]

2. Eigenvalues: Ay = 9, Az = 1.

=y = 3, o = 1.

3. Eigenvectors (right singular vectors):
For A; = 9: eigenvector (1,1)".

MNormalized:
v1 = —=5(1,1)

For A, = 1: eigenvector (—1,1)*.

Mormalized:
1
o2

v —

Il

4. Left singular vectors:

LS

5 =

SVDe

= AL Alr.i.
T

£

l::_lr 1}T-

Avy = 32(1 1T =

i
Ty = qﬂ'b‘l =

Awva = -‘;3{1, —1V' =

us = Aws, =

— diag(3, 1).

i =
5 (1,1)".
,:'.:2-{1!' _1.::'1l'

Lr

-
S



A=Uxnv'
Jo

(Because A is symmetric, here I/ = V)






Q3. SVD of

1. AT A — [

2. Eigenvalue
=3y — W
3. Right singL

- For Aq

4. Left singul:
- Awy =

To get a fu

solve = 1y

S0



5. 3 (full 3 >






2 1]

e | 2

gt Ay = 3, A = 1.
By e — 1

Jlar wvectors:
. = 3: eigenvector (1,1)",

(1, 1)7.

.

g, 2V

g
W 2

ar vectors:

= (3%, % v2).

— it B

-:::1. A = | 6/6
‘H.J'JE_.-'IE

-

= (—2,¥2,0)7.

» = 1: eigenvector (—1,1)* ., s

1. i

0 1

1. &

ATA = [

ekt [
V2

]
= 1 =
—".,,-""E..-"E
Awvp = "..-'"'E..-"E
0
nmor B33 add 4 orthogonal to both:
= -.}:{ s A I )

£l = |_1'_|!.]_ Lir 'il_t,;ql

(3 = 2)

-
" |



< 2%

e I I












Example 4.12 (Vectors and the SVD)

Consider a mapping of a square grid of vectors X € IR? that fit in a box of
size 2 x 2 centered at the origin. Using the standard basis, we map these
vectors using

1 0.8
A=|6 1 |=UxZ¥" (4.67a)
1 0
079 0  —0.62] [1.62 0 _
— | 038 —078 —o049|| 0 10 {:g'ég _0('}638}. (4.67b)
| 048 —062 062 | 0 0 ' '

We start with a set of vectors A (colored dots; see top-left panel of Fig-
ure 4.9) arranged in a grid. We then apply V' € IR2*2, which rotates X.
The rotated vectors are shown in the bottom-left panel of Figure 4.9. We
now map these vectors using the singular value matrix ¥ to the codomain
IR? (see the bottom-right panel in Figure 4.9). Note that all vectors lie in

# What matrix A is doing

We hawve a linear map
A: R 5 R,

x o
So any wvector 2 — ;E'l:| < * is mapped to

1 —08] x; — 0.8z
Az= |0 1 [ 1] = T2 R3.
1 o | L*= x

The example say=: imagine a square grid of points in B2 (like dots in a 2x2 box centered at the origin). We
apply A to each point and see where they land in R3.

& SVDof A

The SVD writes A as




where

« Vis2 x 2 orthogonal [rotation/reflection in the input space),
= 3 isJd x 2 dagonal (singular values = scalings),
« [lis3 x 3 orthogonal [rotation/reflection in the output space).

In the example this s

—0.78 0.62

A= 0.38 —0.T8 —0.49 ] i . .
_0.62 0.62 o o L7962 078

o =

—0.79 0 —(_].132:| |:1.ﬁ? 0 ]

(Values are approximate.)







Example 4.13 (Computing the SVD)
Let us find the singular value decomposition of
1 0 1
A [72 1 O} : (4.81)

The SVD requires us to compute the right-singular vectors v;, the singular
values o}, and the left-singular vectors ;.

Step 1: Right-singular vectors as the eigenbasis of AT A4,

We start by computing

1. —2 5 —2
ATA_[? é“g 0 ;]_[_12 é ﬂ. @82

We compute the singular values and right-singular vectors v; through
the eigenvalue decomposition of AT A, which is given as

w 9 #|[600][m =& v
L = L = ® U -
AA:@\?? 0O 1 0 _Olﬁ‘ﬁ:PDP'
v v w000 |HE F %
(4.83)
and we obtain the right-singular vectors as the columns of P so that
5 —1
Vi— P — [l (4.84)
2 1
v

Step 2: Singular-value matrix.
As the singular values o; are the square roots of the eigenvalues of

W Compute AT Aandits eigen-decomposition (right singular vectors)

1. =3 5 -2 1
e 1 0 1] _
ATA= |0 1 [_2 5 u] = 3

1 0 1 0o 1

Now find eigenvalues and orthonormal eigenvectors of AT A
= Figenvalues: Ay = 6, A =1, A3 =0
= One eigenvector for each:

= X =86:voc[5,—21]"

s dp=1: moc[0,1,2]T

= A3=0: vy ex [1,—2,1]7

Mormalize them:

H [51 —2, 1]” = ""':3'_01 ” [ﬂr 1, 2] ” = "*"'.E: ” [_ 1,2, li ” = /6

S0 an orthonomal eigenbasis is




The columns of ¥ are the right singular vectors v , Vs, U3

& Singular values and X

Singular values are the square roots of the eigervalues of AT A:
oy — ".,.’!E.l, O — 1, oz = 0.

Since A is 2 % 3, we use the "thin® © & B2*%,

B singular valwes amd 3
Singuisr walues ane the square roots of the siperabees of A0 4
oy = ik,

Since Ais 2 20 3 we use e “thine B B

N Left singular vectors: 2y and L1
For mon-—oersy sincpeier el

i

5 1 G &~/ 50
_g] s A = 730 [_u-‘! = !-12_.-’-..-"513

(Theere is rao thind left sinopsiser wector becmuese A s 2 20 3 ronk 2

B Fnal SWD




Wous can check by mudtiphying I7ETT that youo recowver

1 0o 1
""=[—i~ 1 n]-

If'l I]:-._-'













¥ 5.3:

Gradient of a Vector-Valued Linear Function

Let
_ _ 2 =1 0 .3
f{xj_ﬂx.ﬁl_[a 2 =1_].JrEIFL.
(a) Compute the Jacobian %.
(b} Verify it equals the matrix A.
Gradient of a Nonlinear Vector-Valued Function
Let
Xyxa + et
) = [xf — 3x; + sin 23],
X225
Find the full Jacobian
df(x)
=—— g R,
Y dx

lacobian Determinant (Area Scaling)

Given the linear mapping

(a) Compute det (J.
(b} Interpret it geometrically as area scaling.

{c) Show how it transforms the unit square to a parallelogram.

Linear Regression Gradient Using Vector Calculus

Consider the linear model:

y = &0,

]



WYTIETE
e 8 c B?isthe parameter vector,
o @& = B**? is the design matrix,

= gy < 1&* is the vector of observations.

Let:
1 4
e - 0
Define:
e(0) =y — 26,  L(8) = [le(@)]*
Task

Compute the gradient

AL
VoL(8) = 54

step by step.

L Step-by-Step Solution

1. Compute the prediction ©#

2. Compute the error vector e(#) — y — ®F#
4 LT -3
e@) = 1] —+3 | =]-2

0 [—1

+ Ask anything



Change of Coordinates [Basis Transformation)

Given bases

1 (]
by = [g) B2 = [}]-

and new basis

1

-2
£y =[ 1 l.cz= [1]-

(a) Find the change-of-basis matrix fsuch that

_,rbl = I:']_.Jr.EJ: = =

(b) Verify by computing the determinant that the area scaling equals 3.

Jlacobian of Nonlinear Coordinate Transform

Given
¥1 = —2x + X2, P2 = x3 + Xa,
Compuite the lacobian
dy,  dn
day Ay
I =Dy ayl
E-I"IJ_ ﬂ.rg

and compute the determinant.

Chain Rule [(Vector Formy)

Let:

Rty = (Ff = g2ty

3. Formula for the gradient

From Example 5.11:

2

= —2&"' e(@).

Tial



o

4. Compute &7

5. Multiply &7 e

—3
T 1 0 2 el 1{—3) 4+ 0(—2) + 2(1)
SR - [ - ; 1 S 2(—=3)+1(—-2)+ (—1)1)]|
Compute:
« Firstemtny: —3 +2 = —1
* Secondentny: —G6 — 2 —1 = —9
Thus:

6. Compute the gradient

L Final Answer

VoL(8) = [123]

.

This is the gradient of the least-squares loss with resp.™_¢ to the parameter vector #.



Gradient of a Linear Vector Function
Given

foy=axa=1

a 3
3 1 4].IEIFL.

Write components:

_fj_[:I:} = 2x; — J;'g_.f:[:.l':l- = 3x) + X2 + dxq.

The Jacobian is
3 Bf 8f
df _ dx, dx, dxg
u‘x_[% af: E'f:]'

ﬂxl E‘x: -:':':rg

Compute:
h _, AL _ _ 4 BR
' ok, Y g, = b, =0
gy 2 2fa
* 3.:,_3’5.7::_131'_4
Thus

ﬂ_[z -1 0
dx _ '3 1 4

This confirms: the lacobian of a linear function f(x] = Axis exactly 4.

lacobian of a Monlinear Vector Function

Xyka + et
fix) = [xf — 3x- + sin xg].
Lok

Compute all partial derivatives:

First component:







8 8f af

= — s = P = a1 .
&:cl *z -E':r: *1 ﬂxg ¢
Second:
af dfz afz
= 2. = —3,— = B
Elxl 1 IﬂI: ﬂIg £os 3
Third:
dfa dfa - B3
— =0 = x5, — = 2X2X3.
EI]_ ﬂ':u:: e lﬂl’g HzXa
lacobian:
Xa X g*a
Jix) =[2x1 —3 co0s5xg)
Ju] :cg' 2X-X3

Determinant as Area Scaling

Given

Determinant:

det (3 = (—2)(1) — (1)(1) = —3.

Geometric meaning:

| det () I= 3

This means the linear map scales all areas by a factor of 3
[and flips orientation bacause the determinant is negative).

Unit square = parallelogram:







2. Define fumctsons

{a]l Compute the gradient {(lacobiand

i
(B Compute the graceent ? usimg 1
i
Solutions

[a) Gradient of the wvector-valuec

Wirite A and o ==

T haz=m



fle} =

The Facobman (gradient] is the matrox .

Campute each:
=  filx) = Apw + A
ﬁ—::-: = Aji+ :';—{; = Ajn-
- fg}f] =A=-i.21.r':il;}: Aﬂ:i:
= Az, — = Aasa.
=B W
g_f: = Agj, g—f_: = Aga.
SO

T

& Result: For flx] = Ax, the grad



flz} = Az, =B, flz) cR

fF: R — R, Flz, 25} = 2{e™,

g BB, g{t) = [i:]

Rty = [ ogiit) = Flgli}].

af B
o for fiz) = Ar.

e chasn rule, writing all imbermediate derivatrees clearky

i function f{x) = Ax

Ay Aas .
1= Ay Aml. == [ ’]_
Asy A B



Ayyry + Agaira Fil=x)
Axr = | Agory + Agga | = | falx)] -
Az + Agaoa B ETE

of partial derivatrres:

af _ |58 3%
e fry, oy | T

2 &

A A
2 = e

Azx Aas

iemtflacobin is simphy A



(b) Chain rule for hif) = Flg{f])]

Hecall
Flzg, 23) = 3=, gft)

™

hit) = fix

i
We'l compuie Y us=mg the matrx chamn nul

Ctep 1: Gradient of [ with respect to &

1

&
=T
Fp

5o m vector form {rowsw gradeent, as o thee e

i f -
B = |

Step 2- Gradient of ¢ with respect to ¢

.I:E
5111

gilh =

Step 3z Chain rule
abtnn chain rule {like eg. 5 74al:



Plug im:
il
— " — [

eiif

Thizsisal = 2t4imes 2 = 1 product — scalar

il
e s ey
clt
Mow substibute 1y, = £9, #q = ginf:
L £ = -t
m e =19
= 1J-:J —_ l:_..-l-.ﬂ.ﬂ
So
el i
— = 2[I
ol
You can factor if you e
div
clt

¢+ Fimnal gradient

«ifa :
e e E!ﬂﬂ.-l:l:nll B
«if




(&) ms0- [

gltd} = (5P e==! — "=t

e, == i the Booke

Flx1.r2) = xie™.

i
L i = :tilE':'"
b

dh  8f Hg



ot e d

; ” ErT
e [-ru-.—:z-‘ :

Pre™ - 32 4+ 236 - cosi.

5]1__-.:::' ’ _;:IIIE' + I-Ih'h_::n‘ s 1

pirint oy gl snd ooy

=" G+ toos ).

IE-t-lilll - E ! — IE-t-i"II:ﬂ N E l:'!:!'l-!:l_










Example 5.14
Consider the function

f(z) = /22 + exp(x2) + cos (z? + exp(x?)) (5.122)

from (5.109). If we were to implement a function f on a computer, we
would be able to save some computation by using intermediate variables:

a=1z>, (5.123)
b = exp(a), (5.124)
c=a+b, (5.125)
d= /¢, (5.126)
e — cos(c) , (5.127)
Fdte. (5.128)

This is the same kind of thinking process that occurs when applying
the chain rule. Note that the preceding set of equations requires fewer
operations than a direct implementation of the function f(x) as defined
in (5.109). The corresponding computation graph in Figure 5.11 shows
the flow of data and computations required to obtain the function value

The set of equations that include intermediate variables can be thought
of as a computation graph, a representation that is widely used in imple-
mentations of neural network software libraries. We can directly compute
the derivatives of the intermediate variables with respect to their corre-
sponding inputs by recalling the definition of the derivative of elementary
functions. We obtain the following:

ge 0o (5.129)
Oz
B ot (5.130)

da

We have

with

(A) Forward [

1. Compute =

2. Hidden activ

3. Output y

4. Loss I

(B) Backprop:

We work backwan

1. 8L /8y



1 ’
zunxr + b, h=0c(z)= T y = waft + by, L = %{y—t]z

=2, £t =1, wn = 0.5, by =01, wse = —1, ba = 0.2.

Jass

z—=wxr+b;=05-2401=—1040.1=1.1

ration fr
1 i =
h = U{z} = m == 0.7503
y = wah + by = —1 - 0.7503 + 0.2 ~ —0.5503
: l(y —1)? = 1(—0.5503 — 1)? = 1(—1.5503)% = 1 . 2.4033 = 1.2017

agation — gradients

rds using the chain rule.

&L

L=Yy—-—1t1Y7 = skt
(v —t) By

3 =i

&L

et GRS | 51y 1 (e (T 1
Sy



2. Gradients for ws, bs

dy -
El'-wz o abg o

y = woh + by =

SO
aL 8L By
e = 1]
ﬁ‘i‘..l'.ng ﬂ'y 31’.{.‘-2
aL 8L 8y
Abs By Obs

h =~ (—1.5503)(0.7503) ~ —1.1|

— (y —t) -1 = —1.5503

3. Gradient for h

e s Hg 53 ==
5h — By Bh — ¥ — ) w2 = (-1.5503)(—1) ~ 1.5503

4. Gradient for =

We use the sigmoid derivative:
h=eo(z), oHz)==01—Hh)

S50

ath
P = h(l — h) = 0.7503(1 — 0.7503) =~ 0.7503 - 0.2497 =~ 0
s
Then

8L 8L 8h

= = 1.5503 - 0.1874 = 00.2905
5z Ok Bz ) : =




631

L1874

5. Gradients for wur, by

B b_\hﬂz o &z
AR LT . o

Therefore

O B0 O s o
Hw, IOz Bw, DBz oo

8L _OL 8z _ 8L

-— = — = — -1 =0.2
by Oz by [k
(If you wanted, 3L /0x = %wl = 0.1452)
Summary of gradients (approx.)
arL
— = —1.5503
iy
8L oL
= —1. 1631, = —1.k
&w:z abg
a L
Sh = 1.5503
i 0.2905
az e - =]
8L &L
= (1.5809, — == 0.290f
le -E-'b}_

(C) Reverse-mode automatic differentiation (short exp

Reverse-mode automatic differentiation (AD) evaluates the computati
values in a graph ("tape"), then runs a backward pass that applies the
inputs. The backward pass reuses intermediates, so the cost of getting
respect to many parameters is only a small constant factor more than
Unlike symbolic differentiation, reverse-mode AD does not build huge
numerical finite differences it is exact up to machine precision. That's v

{backpropagation) is the standard method for training neural network

ad P A S



&

! = 0.5809

05

lanation)

on once forward, storing intermediate
chain rule from outputs back to all

| gradients of one scalar loss with

the cost of computing the loss itself.

» algebraic expressions, and unlike
why reverse-mode AD

s with millions of parameters.



= pa2a (E) ¢

We obzerve twvo categorical random variablas: Ee
« X has £ possible states:

C o A

(=1

+ Y has 3 possible states: (G
Ny Naa ¥y
The following tabls gives the joint frequencies ny ;-
(H)1

Wi
Wi

Trzing this wable, answer ALL of the following:

(A1l
Hil 4

{A) Compute all row sams r;.
(B} Compute all column sams «;.
{C) Compute the total number of observations V.
(D) Comapute the joint probabilifies:
Pi¥ =2 ¥ = 30, PN = 2., ¥ = 93]

(F) Conditional probahbilities Nl
Formula:
- e
P¥=y | Xx=x)=-" s
gy =
PE=x|Y=y)=— o
' M
Pi¥=v: | ¥X=x)=n/r; =5/10=05 .
v

PIX =x; | ¥ =wz) = magfoq =29 % 0,222

(&) Checl: summation rules

Z TP = a0

10734+ 10/34 +8/54 — 6/34 = 34/34 =1



oormect

D AP =yp

10/34 4+ 15/34 +9/34 = 34/34 = 1

Correct +

(H}) Inferpretation
o Nlost frequent pair (largest m;)
= Largsst cell = & (for gagu)
So the pair (3=, Y=v1) iz the most common.




Conypute the marginal probabilities:
Pl¥ =x:). ¥ = 1)

Compute the conditional probabilities:

L. AilY =y | X =a)
L PE =% 1Y =w]
Check that

Interpret the resali:

ch pair (21 and Y states) seems the most fequemt?
ch catemoy seams most probable for 37 For YT

Z PN =ax) = 1.2 P =ya=1

Eoow sumx

b+=5+1=10
L+ 6+2=10
f+=1+-4=8
.+3+2=58

Column swmx
f=2+-3+1=10
i=85+-1+3=15
. F2+44+2

1l
n

=t probable category of X:

max {10,34,10,34.8/34,6/34} = 10,34

= #md ®: are tied as most probable.

st probable category of Y

max {10/34, 15,34, 5/34} = 15,34

vz is the most probable Y category

{C) Total

{or = of cohnmas: 10

() Joint probabilities

Fommula:

PIX=x; ¥F=y1 =
PIX=x,¥V=y;) =

(E) Marginal probabil
Formula:

P =x)=rz/N=
MY =wl=c/N=

FORMITTAS -

1. Joint Frobability {Fr

1= Fequancy o
=« [N=toal abserva

2. harginal Frobabilit

Whare:



{ooluxmum s}

3. Marginal Probabilit

Wheare:

{ronay s

4. Frobability Mhaszs Fu




N=10=+-10+B+5=34

)

- - r-!lu.
PX =x,¥ =)= e
-4

So total number of events:
My /34 = 6/34 ¥ 0. 176
My 34 = 2/34 & 0.0588

feses B 1. Joint Probability

Joint probakbility
PX =x)=

R

P =w)=

B34 = 0,235
10/34 % 0,294

B 2. Marginal Probability of X

robability of both X and Y together)

r!ll
Py =x, Y =w)== ~ -
Tl SYEER B 3. Marginal Probability of Y
o |
= ANDY =17
Cosmpute: excie
AROMS - F{}r = m} = E = -I]E-EH
- H}':m}:ﬂ:ﬂ.ﬂ
by of X = PY =m)=§ =031
PIX = x; =% S




Probability of ¥ — go given X = =5

Y =ph|X
vof ¥

PF=wl1=

==

Y =m |

mction (FMLEF)




LD 0 ATE +ATE =1

L3554+ 0311 =1







Example 7.1
Consider a quadratic function in two dimensions

r(ED=3ETE SE-ETE] o

with gradient

v (E;D - [;ﬂ | ﬁ élo} - BT (7.8)

Starting at the initial location @, = [—3, —1] T, we iteratively apply (7.6)
to obtain a sequence of estimates that converge to the minimum wvalue

Let's calculate the first iteration of gradient descent using the numbers from your image.

1. Identify the parameters: From Equation (7.7), we have the matrix .4 and vector be

2 1 5
A= [1 21‘1]-‘ b= [3]

2. Identify the Start Point: The text states the initial location is:

-l

3. Calculate the Gradient at x;: Using Equation (7.8) from the image (written in standard column
vector form):

Vf(x)=Ax b

First, multiply .4 by x;:

w2 11[-3] _ [@3)+@-1] _[-7
ax=[1 %] 3] - [ &) - =

Mext, subtract e

eror=[2] [ - [

The gradient is [—12, —26]T. This tells us the slope is very steep in the negative direction.

4. Update the Position (The Step): We need a learning rate (). The image doesn't provide one,
so let's assume a standard rate of o — 0.05.

x; = xp — 0.05 x V fixg)

x =[] o005 [ 3]




o — |3+06] _[-24
17 1—14+13]| " | 03




1. Define the guadratic function

/(D) -3 = e [

Let's egpand it =o it looks more familkr.

1. Muiiply the matrix by the vedior:
2 1 _
1 &) -

[#r =] I::r_l'_m = #1(2ey + &) + 22z + Phea) = e} + Drpyzn + Mg

2. Left-muiiply by [ @]

1
§l---]l='-l!?+:n=u+ 103

5 3] [;;l = Sy + Sy

[ £z, 22) = 5 +2yms + 1003 — Sy — By |

I — K
Vi(m,=) = | 2R _‘;,]

Thizs matches the compact matrix fiorm in yoor bookc
=[] []-[d

3. Gradient Descent BExample
U=mr gradient desormt with:
= leaming rate o = [LOS

- . —3
= starting point =% — [_1]
Update nke:

= — 2™ oy (=)
StepD —1

Start =t = (—3, —1)

Gradeent at 0







Example 7.5 (Linear Program)
Consider the linear program

min 2
meR2 3
2
2

2 33
—4 8 (7.44)
subject to —2 1 Fl] < L5
o -—1| —
0 1 8

with two variables. This program is also shown in Figure 7.9. The objective
function is linear, resulting in linear contour lines. The constraint set in
standard form is translated into the legend. The optimal value must lie in
the shaded (feasible) region, and is indicated by the star.

# Evaluate the objective at each vertex

Recall f(xy,Ts) = —Hxy — 32

37T 25
1 A =—,= }):
= ﬁ)

At (17/2, 8):

F=-5-2_3.8=_

At (6,1):

f=-5-6—38-1

At(—2,1):

f=-5-2)—-3-

At (3/2, B):
f=-5.2_3.8=_8_24=-315

We are minimizing, so we choose the smallest value:




. (37 25\ _
::—(31,5),-...{12.33,4.1?}.

That point is the star shown in the plot it lies in the feasible region and is where the objective’s co
is as “low™ (in the minimize sense) as possible while still touching the shaded region.

o d P Lo

W Write the linear program in inequalities
From the matmx form (7.44):

min —[5 3|7 [:ﬂ

Wirite constraints explicithy:

1 22 + 2z, < 33
2x; — 4z, < 8
—2r, + 22 < 5
—Fa = —1 = 2 >1
s = 8

Objective:
min fzy,xs) = —5x; — Ixs
(Equivalently, maximize 5x1 + 3x2.)

The shaded polygon in the figure is the set of points satisfying all 5 inequalities (the feasible region).

# Find the corner points (vertices) of the feasible region
In 2-D linear programming, the optimum (if it easts and the region is bounded in the direction of
ophmization) occurs at a vertex of the feasible pohygon.

Vertices are intersections of pairs of boundary lines:

(1) 2z1 4+ 2z = 33
() 2x1 — 4xra = 8§
3 —2r1+x2=05
@xza =1
B)xz =8

Solve mtersechions and keep only those that satisfy all inequalities.
The feasible vertices are:

1. Intersection of (1) & (2):




2. (1) &5k (x1,x2) = (17/2, 8)
3. (2) &4 (x4, xa2) = (6, 1)

4 (3) &Mk (zy,x22) = (—2, 1)
3. (3) & (5k (x1,z2) = (3/2, 8)
All five lie in the shaded region.







¥ Evaluate the objective at each vertex

Recall f{xy,xs) = —Hxy — 3xs.
1. At(a—?,ﬂ—ﬁ -
3’6
37 25
f=-5- =y —3- ry
At (17/2,8):
F=-5-_3.8=__
At (6,1):
f=-5-6—3-1=-33
Ar(—2,1):
fF=-5(-2)—3-1=10—3=T7
At (3/2,8):
f=-5-3_3.8=_8%_24=-_315

We are minimizing, so we choose the smallest value:




37 25
2 =| —, — | = (12.33, 4.17)|.
3 6 ( ; )
That point is the star shown in the plot: it hies in the feasible region and is where the objective’s contour |
is as “low™ (in the minimize sense) as possible while still touching the shaded region.

'lv:[:' T,

~
L)
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